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CHAPTER I

Background

For this section we assume X to be a complex manifold or an analytic variety of

(complex) dimension n and that M is a closed, oriented, C2 real (2p−1)-chain in X.

Let S be a holomorphic p-chain in X\ sptM . We say M is the boundary of S (or

that M bounds S) within X if the following three conditions hold.

• [S], the current of integration of S, has a simple extension to X.

• sptS ⋐ X.

• d[S] = [M ] as currents (or ∂S = M in the sense of Stokes) in X.

(Remark: Unless M = 0, the simple extension of [S] is not d-closed in X and does

not represent a holomorphic p-chain in X.) We may simply say that M bounds S,

if X is clearly understood from the context. We refer to X as the ambient space.

Given X we wish to determine when M bounds a holomorphic chain within X. A

procedure for the identification of such M is called a characterization of boundaries of

holomorphic chains within X or for the sake of brevity, a characterization within X.

In some literature, finding necessary and sufficient conditions to describe boundaries

of holomorphic chains is referred to as the problème du bord.

Wermer [28] provides a characterization within X = Cn when M is a simple closed

curve with stronger smoothness conditions. M bounds a holomorphic chain, in fact
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an analytic variety, if and only if M is a proper subset of its polynomial hull, which

is equivalent to the vanishing of the polynomial moments of M (integrals over M of

polynomial 1-forms in Cn). In [15] Harvey and Lawson provide a characterization

within any Stein space X. A closed, oriented, C2 real (2p − 1)-chain M bounds a

holomorphic p-chain if and only if all the moments of M (integrals over M of ∂̄-

closed (p, p− 1)-forms of X) vanish. For p > 1 they further give that M bounding

a holomorphic chain is equivalent to the maximal complexity of M . In [16] Harvey

and Lawson give a characterization within X = CPn\CPn−q for q ≤ p via moment

conditions. When q < p they give a characterization using maximal complexity.

Dolbeault and Henkin provide a characterization within CPn, for p = 1 in [8] and

for general p in [9]. Their characterization gives that M bounds a holomorphic chain

if and only if M is maximally complex (vacuous when p = 1) and a particular integral

over M , parameterized by two vectorized variables ξ and η, somewhere locally agrees

in the second derivatives of ξ with some linear combination of holomorphic solutions

to a vectorized form of the shockwave equation ffξ = fη. Connected work by El

Kasimi provides a characterization within Grassmanian spaces when p = 1 in [10]

and some results for characterizations within certain compactifications of Cn in [11].

We remark that the characterization question for p > 1 exhibits behavior differing

from that for the case p = 1. Maximal complexity is a local property and is a

necessary condition for M to bound in any ambient space. But when p = 1 maximal

complexity of M vacuously holds. So maximal complexity is neither pertinent nor

sufficient in the characterizations of holomorphic 1-chains. As this shows and thus

cautions, results for p > 1 may not immediately port to p = 1. In reverse, results for

p = 1 tend to yield relevant insight for the case of p > 1, whether by generalization

of technique or by reduction (i.e. slicing) of the problem to p = 1. A technique of
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slicing is employed for Dolbeault’s and Henkin’s result of a characterization within

CPn for general p in [9]. So the case p = 1 holds some special nuance though retaining

relevance to the general characterization question.

In past work many questions concerning holomorphic chains have been reduced,

by projection techniques, to the case of codimension 1. As relevant examples, we cite

[18], [15], and [8]. This calls some attention to the case of holomorphic (n−1)-chains,

also known as divisors.

Together these two considerations motivate a look at the case of simultaneous

dimension 1 and codimension 1, which is p = 1 and n = 2. So this work is devoted to

results concerning characterizations of holomorphic 1-chains within complex analytic

surfaces.



CHAPTER II

Preliminaries

Here we present some basic definitions and properties concerning holomorphic

chains and birational maps.

Let V be a subset of a complex manifold Z. We call V an analytic variety

(also referred to as an analytic set) in Z if for all points z ∈ Z, there exists a

neighborhood U of z in Z and analytic functions φ1, φ2, . . . φℓ on U such that V ∩U =

V(φ1, φ2, . . . , φℓ) ∩ U . (We use the notation V(φ1, . . . , φℓ) to represent the set where

the functions φ1, φ2, . . . , φℓ simultaneously vanish.) If V ′ is an analytic variety in

Z that is also contained in V then V ′ is an analytic variety in V . Without any

loss to understanding the previous concepts, we may also allow Z to be an analytic

variety in a complex manifold. (For some of the basic definitions concerning analytic

varieties, such as irreducibility, dimension, tangent cones, and intersections, see [13]

pp.20-22, 60-65.)

A holomorphic chain (or analytic cycle) S in Z is a locally finite Z-formal linear

combination of analytic varieties in Z. S may be represented as
∑

j µjVj, where

µj ∈ Z and the Vj are distinct irreducible analytic varieties in Z. For an irreducible

analytic varieties Vj, the corresponding µj is its multiplicity. (If an irreducible ana-

lytic variety is not contained in a summation representation, then it has multiplicity

4
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0.) A component of S is an irreducible analytic variety having non-zero multiplicity.

A holomorphic p-chain is a holomorphic chain having only p-dimensional compo-

nents. We define the support of S, sptS, to be the union of all the components of

S. Note sptS is an analytic variety in Z. An analytic variety V may be identified

with the holomorphic chain
∑

j Vj, where Vj are the irreducible components of V .

A holomorphic p-chain V determines a current of integration [V ]. The currents

of integrations of holomorphic p-chains may be characterized as locally rectifiable

d-closed (p, p)-dimension currents having support with zero Hausdorff (2p+ 1) real-

dimensional measure, [18].

Many of the properties of analytic varieties can be algebraically extended to holo-

morphic chains. Let S =
∑

j µjVj and T =
∑

k νkWk be two holomorphic chains in

Z. If U is an open set in Z then the intersection of S with U (or the restriction of

S to U) is given by S ∩ U =
∑

j µj(Vj ∩ U). The intersection of two holomorphic

chains may be given as S · T =
∑

j

∑

k µjνkVj ·Wk. (Note: Two analytic varieties V

and W also have a point-set notion of intersection denoted by V ∩W . Note V ·W

is a holomorphic chain having support V ∩W .)

If p is a point of intersection between analytic varieties V and W , we say it is

a point of locally transverse intersection if for some neighborhood U about p, the

components of V ∩ U transversely intersect the components of W ∩ U . We say two

holomorphic chains are locally transverse if each component of one intersects the

components of the other locally transversally. (To see a difference between local

transversality and “global” transversality, consider the intersection of V(z2
2 −z

3
1 −z

2
1)

and V(z1) at (0, 0). V(z2
2 −z

3
1 −z

2
1) is irreducible and so has only one (“global”) com-

ponent with a singularity at (0, 0). But it has two non-singular “local” components

about (0, 0) which transversally intersect V(z1).)
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An understanding of rational and birational maps will be needed for Chapter V.

(Sources for much of the following include [13], [14], and [26].) Let X be an irre-

ducible complex quasi-projective variety, that is a Zariski-open subset of a complex

projective variety. X may be embedded in some complex projective space CPm, with

homogeneous coordinates [Z0 : Z1 : · · · : Zm]. A rational function on X is defined as

the quotient P/Q of two homogeneous polynomials P and Q in Z0, Z1, . . . , Zm such

that they have the same degree and Q|X 6≡ 0. Since X is irreducible, the collection of

rational functions on X forms a ring. The function field of X, C(X), is defined as the

quotient of the ring of rational functions on X by the subring of rational functions

with numerators identically vanishing on X.

A rational map φ on X to CPℓ, denoted as φ : X − − → CPℓ, is a “map” given

by [φ0(x) : φ1(x) : · · · : φℓ(x)], where φj are rational functions on X and at least

one doesn’t identically vanish on X. By multiplying by a common denominator

and eliminating common factors a rational map can also be represented as [H0(x) :

H1(x) : · · · : Hℓ(x)], where the Hj are homogeneous polynomials of the same degree

with no irreducible factor common to them all. A rational map is not a map in the

true sense of the word. For there may exist points in X at which all the functions

φj (or Hj) vanish. A standard example of this is the rational map [Z1 : Z2] on CP2

(coord. [Z0 : Z1 : Z2]), which is not defined at [1 : 0 : 0].

Define I(φ) = V(H0, H1, . . . , Hℓ) to be indeterminacy set of φ. As there is no

factor common to all Hj the indeterminacy set will have codimension at least two.

(Thus in complex surfaces the indeterminacy set is discrete.) If I(φ) = ∅, meaning

the Hj never all simultaneously vanish, then we say φ is regular on X. Note that

on X\I(φ), φ is regular and thus a well-defined holomorphic map. X\I(φ) is called

the domain of definition of φ. From the previous definitions it holds that C(X) and
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C(X) are equivalent. So in fact a rational map on X also defines a unique rational

map on X. Thus a rational map on X is fully determined by a rational map on any

Zariski-open subset of X. So a rational map may be defined as a regular map on

some Zariski-open subset of X. As a related result, a map defined and holomorphic

on the complement of a variety of codimension at least two in X defines a rational

map on X. (See [13], pg. 491.)

Define C(φ), the critical set of φ, to be the closure of the critical set of φ on

X\I(φ). Note C(φ) is a subvariety of X.

As a rational map is not a true map, we need to be careful in discussing the notion

of image and pre-image. To rigorously define these we first consider Γφ the graph of

φ. We define Γφ to be the closure of the graph of φ over its domain of definition in

the space X × CPℓ. We also define the projections π1 : Γφ → X and π2 : Γφ → CPℓ,

which are regular maps. For a variety B in CPℓ we define its inverse image to be

π1(π
−1
2 (B)). For a variety A in X we define its image or total transform through φ

to be π2(π
−1
1 (A)). We define the proper transform through φ of A as the closure in

CPℓ of the image (in the normal sense) of A ∩ (X\I(φ)). (One reference for total

and proper transforms, in the case of codimension 1 holomorphic chains, also known

as divisors, may be found in [13], pg.495.) If Y ⊆ CPℓ contains the image of X, then

we can say φ is a rational map from X to Y , denoted φ : X −− → Y .

If φ : X − − → Y and ψ : Y − − → Z are two rational maps we can talk about

their composition so long as the image of X is not contained in I(ψ). For then we

can define ψ ◦φ by a regular map on X\(I(φ)∪φ−1(I(ψ))) to obtain a rational map

ψ ◦ φ : X −− → Z. So if φ is a inclusion of X ⊆ Y , then we can use this to define

the restriction of the rational map ψ to X, so long as X 6⊆ I(ψ). The image of ψ|X

is an alternate definition for the proper transform of X under ψ.
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Now if φ : X−− → Y and ψ : Y −− → X are rational maps such that φ ◦ψ and

ψ ◦ φ are defined and equal the identity, then we say that X and Y are birationally

equivalent and we call φ and ψ birational maps. Off of the indeterminacy set and the

critical set φ is a biholomorphism between X\(I(φ)∪C(φ)) and Y \(I(φ−1)∪C(φ−1)).

Note that Γφ−1 and Γφ are simply reflections of one another, and so taking the image

under φ−1 does agrees with taking the pre-image under φ.

Since on its domain of definition a rational function is holomorphic, the image of

C(φ)\I(φ) cannot intersect the domain of definition of φ−1. (Examine the Jacobians.)

Thus φ(C(φ)) ⊆ I(φ−1). Similarly φ−1(C(φ−1)) ⊆ I(φ). A more useful statement can

be made with complex surfaces. Namely, birational maps between complex surfaces

may be factored as a composition of a sequence of blow-up and blow-down maps. As

a reference see [13], pg.511.



CHAPTER III

Initial Discussion and Examples

To begin our look at characterizations within some non-Stein surfaces, we show

some basic observations which serve to contrast the class of boundaries of holomor-

phic 1-chains in a Stein surface versus the class of boundaries of holomorphic 1-chains

in either CP2 or C×CP1. We also issue some caveats, supported with examples, con-

cerning how a boundary of a holomorphic chain may interact with the holomorphic

chain itself.

One feature of boundaries of holomorphic chains in Stein spaces (not just sur-

faces) is that the holomorphic chain they bound is unique. For if M bounds two

holomorphic chains S1 and S2, then S1 −S2 forms a holomorphic chain in X\ sptM .

This is d-closed as a current in X and by [18] this extends to a holomorphic chain in

X with support contained in the closure of sptS1 ∪ sptS2, which is relatively com-

pact in X. By the maximum principle, the only compact holomorphic chains in a

Stein space is the zero chain. But for spaces that contain compact analytic varieties

(implying they are not Stein), the boundaries of holomorphic chains are not unique.

For compact analytic varieties may be added to or subtracted from a holomorphic

chain, leaving its boundary unchanged. But a “uniqueness” modulo the arbitrary

addition of compact analytic varieties does hold, though sometimes veiled by some

9
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nuances in component bookkeeping. (For instance ∂∆ × {0} bounds both ∆ × {0}

and −1 · (CP1\∆) × {0} within CP1 × CP1. The two holomorphic chains differ by

CP1 × {0}.)

Also by the characterization within Stein spaces given by Harvey and Lawson,

[15], being a boundary of a holomorphic chain may be viewed as a closed condition,

as it is equivalent to the vanishing of a collections of integrals over M . So in fact if

we have a sequence of closed, oriented, C2 real 2p− 1-chains Mk that bound within

X and Mk →M , as currents, then it follows that M bounds within X.

Particularly the previous holds for boundaries of holomorphic 1-chains within C2.

But a dramatically different arrangement occurs for CP2 and C×CP1. For one being

a boundary of a holomorphic 1-chain in either of these latter spaces is not a closed

condition. To illustrate this, we provide the following example.

Define pm(z) to be the Taylor polynomial of degree m which approximates ez

about z = 0. Then define γm to be the real 1-chain given consisting of one simple

closed curve ∂∆ → C2 given by ζ 7→ eζ + pm(ζ−1). Define γ to be the real 1-chain

consisting of one simple closed curve ∂∆ → C2 given by ζ 7→ eζ + eζ−1
. γm → γ, as

currents. Now define Vm to be the analytic variety (which may be defined in either

CP2\ spt γm or C × CP1\ spt γm) given as the graph of the meromorphic function

eζ + pm(ζ−1) over the unit disk ∆. It holds that γm bounds Vm within C × CP1 (or

CP2). However γ does not bound within C × CP1 (nor CP2).

In fact amongst closed, oriented, C2 real 1-chains in C2, those that bound within

CP2 or C× Ĉ are dense, when considering the topology of currents on their currents

of integration. In particularly any closed, oriented, C2 real 1-chain in C2, may be

approximated by real 1-chains that bound. Note that it suffices to show this for a

simple closed C2 real curve. We can make the strongest and easiest demonstration of
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this for CP2. Let γ be a closed, C2 real curve ∂∆ → C2 given by ζ 7→ (f1(ζ), f2(ζ)).

On ∂∆, f1 and f2 can be approximated by functions of the form
∑∞

j=−J cjζ
j. These

approximating functions have meromorphic extensions on the unit disc, and so define

a map from the unit disc into CP2. This gives an analytic variety in CP2 bounded

by an approximate to γ.

For C × CP1, a demonstration of density is a little more involved. Again let γ

be a simple closed C2 real curve. Define π1 as the projection of C × CP1 onto the

first coordinate. By an arbitrarily small perturbation of γ, we can assume π1γ has

finitely many self-intersections in C. Now by adding and subtracting “vertical” line

segments above the self-intersections of π1γ, decompose γ into a linear combination

of simple closed C0 real curves having images under the projection π1 that are simple

curves bounding a domain with positive multiplicity in C. Define these to be γj and so

represent γ as
∑

j ǫjγj, where each ǫj is ±1. We may perturb each γj by an arbitrarily

small amount to γ̃j which are represented as the graphs of C2 functions on the C2

boundary of a bounded, simply-connected domain in C; the domain being denoted

Ωj . By further arbitrarily small perturbations we may assume these functions have

an meromorphic extension to Ωj . Using the graphs of these meromorphic functions

over Ωj , with multiplicity ǫj we derive a holomorphic 1-chain in C × CP1 which is

bounded by a closed, oriented, C2 real 1-chain that arbitrarily approximates γ in the

topology as understood through currents.

However it should be noted that approximation in some stronger sense may fail

in C × CP1. For instance, if we had wished to approximate the γ above by a simple

closed C2 real curve, this would not be possible for certain cases of γ. As a general

class of example consider any simple closed C2 γ such that π1γ is a “figure-8” in C.

In particular, assume that π1γ has a single self-intersection at 0, winding number
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+1 about 1 and winding number −1 about −1. (Such a curve could be built on the

algebraic variety V(z2
2−z

2
1+1) to bound within CP2 or CP1×CP1.) Any appropriately

close approximate γ̃ of such a γ would still maintain a positive winding number about

z1 = 1 and a negative winding number about z1 = −1. Suppose that γ̃ did bound

some holomorphic 1-chain S within C×CP1. By the maximum principle it must be

contained in K × CP1, where K is the polynomial hull of π1(γ̃). Then because S

has no components over the unbounded component of C\π1(γ̃) and by the winding

numbers of γ̃, S must have a negative component over −1 and a positive component

over 1. But as γ̃ is a simple curve in C×CP1, it only bounds one component, either

with multiplicity +1 or −1. Hence this forms a contradiction.

The closed, oriented, C2 real 1-chains that bound within CP2 (or C × CP1) form

a dense non-closed set within the entire set of closed, oriented, C2 real 1-chains. One

product of the work of the following chapters, given in Chapter IX, is that this set

of bounding closed, oriented, C2 real 1-chains may be given as an increasing union

of closed sets.

These observations help provide an a priori acknowledgment that the character-

izations within CP2 and C × CP1 must greatly differ from characterizations within

C2. For one the characterizations within CP2 and C × CP1 will not involve the

vanishing of moments. (In this context, a moment of a real 1-chain means the in-

tegration by a form over the given real 1-chain.) The lack of closedness prohibits

a characterization involving only vanishing moments. But the property of density

prohibits the presence on any non-vacuous moments in a characterization. So as we

examine characterizations within CP2 and C ×CP1, we should note in advance that

their formulations must have a novel flavor.

Before proceeding, we wish to provide some cautionary remarks concerning the
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relation of the boundary of a holomorphic chain and the holomorphic chain itself.

As one note of caution, the notion of boundary with respect to currents or in

the sense of Stokes can differ from some other notions of boundary. The following

example, taken from [15], demonstrates a real-analytic chain M bounding a real-

analytic submanifold S (as a holomorphic chain) within X while (S,M) is not a

manifold with boundary in X.

Let Φ : Cn−1 → Cn be given by (t, z3, . . . , zn) 7→ (t2 − 1, t3 − t, z3, . . . , zn).

Notably Φ is an immersion and has image V(z2
2 − z3

1 − z2
1). Φ(−1, z3, . . . , zn) =

Φ(1, z3, . . . , zn) = (0, 0, z3, . . . , zn). Otherwise Φ embeds (C\{−1, 1}) × Cn−2 into

(C2\(0, 0)) × Cn−2. Let B be the disc of radius 2 with center a = (−1, 0, . . . , 0) in

Cn−1. Let b = (1, 0, . . . , 0) ∈ ∂B and note Φ(a) = Φ(b). M = Φ(∂B) is real-analytic

submanifold of Cn and S = Φ(B\{a}) is a real-analytic submanifold of Cn\M . M

bounds S within Cn, but (S,M) is not a submanifold with boundary.

The previous example and simple variations of it show that a boundary of a

holomorphic chain can be intersected by a holomorphic chain it bounds. In slightly

rougher language, we should be conscious of the possibility of the holomorphic chain

“globally folding” back onto its boundary.

While the above shows we should perceive things in some good “local sense”, one

cannot attribute all issues to local properties. Global structure does still have a role.

For instance if γ is the graph of a continuous function f over a simple closed curve

(enclosing some domain Ω), then it bounds within C2 if and only if f has a continuous

extension to a function holomorphic over Ω. (See Theorem 20.2 of [1].) But this does

not arise from local considerations. Namely if γ is a simple, closed, C2 real curve

bounding within C2 (coord. (z1, z2)), then some portion of γ being the graph of a

continuous (or even Ck) function in z1 does not imply there is a holomorphic 1-chain
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bounded by γ that nearby is the graph of a function in z1.

As a concrete example, consider a portion of γ given as (x, f(x)) over a portion

of the real axis, where f(x) = x
100
3 . This portion of γ lies on the algebraic variety

V(z3
2 − z100

1 ), which is three-sheeted over C. Locally it divides this variety into two

portions. One portion consists of two sheets over a local portion of the half plane

of positive imaginary part and one sheet over a local portion of the half plane of

negative imaginary part. The other portion has the number of sheets over each local

portion of half-plane reversed.

This local portion of a curve can be incorporated into a γ that bounds a holomor-

phic 1-chain, which would then contain one of the aforementioned portions of the

given algebraic variety. However such γ must have self-intersections in the projection

by π1, due to the global result previously mentioned.

These examples may also be helpful test subjects for ruminating on basic proper-

ties and conjectures. We conclude our initial discussion and now begin our demon-

stration of characterization for some non-Stein spaces.



CHAPTER IV

The Dolbeault and Henkin Characterization within CP2

Dolbeault and Henkin provide a characterization of holomorphic 1-chains within

CP2. This is the earliest example we found of a characterization within a non-Stein

surface. This result is also the foundation of their more general results of character-

izations of holomorphic p-chains in CPn. This section presents and elaborates upon

their characterization within CP2.

For this section we use the following conventions of notation. Let γ be a closed,

oriented C2 real 1-chain in C2 ⊂ CP2. We denote homogeneous coordinates for CP2

as (w0 : w1 : w2) and affine coordinates for C2 ⊂ CP2 as (z1, z2) = (w1/w0, w2/w0).

Define g = z2 − ξ − ηz1 and g̃ = w2 − ξw0 − ηw1. Then (ξ, η) serves as coordinates

for an affine piece of (CP2)′. We also define the projection πη : C2 → C by (z1, z2) 7→

z2 − ηz1. Now for any (ξ, η) such that ξ /∈ πη(γ) we define

(4.1) Gγ(ξ, η) =
1

2πi

∫

γ

z1
d(z2 − ηz1)

z2 − ξ − ηz1
=

1

2πi

∫

γ

z1
dg

g
.

Here is a characterization of boundaries of holomorphic 1-chains within CP2 due

to Dolbeault and Henkin.

Theorem IV.1. For γ a closed, oriented, C2 real 1-chain in C2 ⊂ CP2, the following

are equivalent:

15
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(i) γ bounds a holomorphic 1-chain within CP2

(ii) ∃ (ξ∗, η∗) with some neighborhood Ω such that ∃ non-negative integers N+ and

N− and functions f+
j (ξ, η) for 1 ≤ j ≤ N+ and f−

j (ξ, η) for 1 ≤ j ≤ N−

that are defined on Ω, analytic in (ξ, η), and satisfy the shockwave equation,

ffξ = fη, (f = f±
j ), such that on Ω,

(4.2)
∂2

∂ξ2
Gγ(ξ, η) =

∂2

∂ξ2

(

N+
∑

j=1

f+
j (ξ, η) −

N−

∑

j=1

f−
j (ξ, η)

)

(Remark: This is Théorème II of [9] restricted to p = 1 and n = 2. If we modify

condition (ii) by removing the second partial derivative symbols from (4.2) then

the resulting theorem would also be valid. The theorem so modified is in fact the

statement given in [8]. The statement of (ii), as we have given, may be more simply

proven as equivalent to (i) and is a more natural condition for equivalence, as we

shall later see.)

To prove Theorem IV.1 we use the same elements of the proof as given by Dol-

beault and Henkin. However our arrangement will provide several stronger implica-

tions which have their own independent value. This will culminate in Theorem IV.6,

which is a stronger and more structurally rich statement than Theorem IV.1.

First we provide a stronger form of (i) =⇒ (ii), using the following defini-

tions. Define Uγ = {(ξ, η) ∈ C2 | ξ /∈ πη(γ)}, TV = {(ξ, η) ∈ Uγ | {w2 =

ξw0 + ηw1} is not locally transverse to V }, and IV = {(ξ, η) ∈ Uγ | {w2 = ξwo +

ηw1} ∩ V ∩ {w0 = 0} 6= ∅}.

Lemma IV.2. Let V be a holomorphic 1-chain bounded by γ within CP2 and con-

taining no components in the line at infinity {w0 = 0}. For any simply-connected do-

main Ω ⊆ Uγ\(TV ∪ IV ), there exist nonnegative integers N+ and N− and functions
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f+
1 , f

+
2 , . . . , f

+
N+ and f−

1 , f
−
2 , . . . , f

−
N− well-defined, analytic in (ξ, η), and satisfying

the s.w. equation, ffξ = fη, on Ω, for which (4.2) holds.

Proof: As Ω is simply-connected and by continuation of analytic and constant

functions, the proof need only be done locally. So let (ξ0, η0) be a point in Uγ\(TV ∪

IV ) and let Ω be a simply-connected neighborhood of (ξ0, η0), which we may shrink

as needed.

Let Ωη0 = {ξ | (ξ, η0) ∈ Ω}. Each component of V ∩π−1
η0

(Ωη0) forms an unbranched

covering of Ωη0 and is contained in C2. (Recall πη(z1, z2) = z2 − ηz1.) Similarly let

Ωξ0 = {η | (ξ0, η) ∈ Ω}. If (0, ξ0) /∈ sptV , then each component of V ∩τ−1
ξ0

(Ωξ0) forms

an unbranched covering of Ωξ0 and is contained in C2, where we define τξ(z1, z2) =

z2−ξ
z1

.

For the present, assume V has no components contained in the line {w1 = 0}. For

(ξ, η) ∈ Ω, define N+(ξ, η) and N−(ξ, η), respectively, as the positive and negative

multiplicities of the intersections of the line {w2 = ξw0 + ηw1} with V . With the

covering properties from the previous paragraph, we conclude that N+ and N− are

locally constant, hence constant over Ω. These covering properties allow us to define

p+
j (ξ, η) for 1 ≤ j ≤ N+ and p−j (ξ, η) for 1 ≤ j ≤ N− as analytic functions from Ω

to C2 that give, respectively, the positive and negative points of intersection of the

line {w2 = ξw0 + ηw1} with V . (Now if we allow V to have components contained

in the line w1 = 0, then the definitions for N± and p±j (ξ, η) may be validly extended

as given.) Define f±
j (ξ, η) = z1|p±j (ξ,η). Define q+

s for 1 ≤ s ≤ M+ and q−s for

1 ≤ s ≤ M− to be the points of intersection between V and the line at infinity

{w0 = 0}, of positive and negative multiplicity, respectively.
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Note

(4.3) Gγ(ξ, η) =
1

2πi

∫

γ

w1

w0

d(g̃/w0)

g̃/w0
=

1

2πi

∫

γ

(

w1dg̃

w0g̃
−
w1dw0

w2
0

)

.

By residue calculations,

(4.4)
1

2πi

∫

γ

w1dg̃

w0g̃

=
∑

j

w1

w0

∣

∣

∣

∣

p+
j (ξ,η)

−
∑

j

w1

w0

∣

∣

∣

∣

p−j (ξ,η)

+
∑

s

w1

g̃

dg̃

dw0

∣

∣

∣

∣

q+
s

−
∑

s

w1

g̃

dg̃

dw0

∣

∣

∣

∣

q−s

=
∑

j

f+
j (ξ, η) −

∑

j

f−
j (ξ, η)

+
∑

s

w1

(

d(w2−ηw1)
dw0

− ξ
)

w2 − ηw1

∣

∣

∣

∣

∣

∣

q+
s

−
∑

s

w1

(

d(w2−ηw1)
dw0

− ξ
)

w2 − ηw1

∣

∣

∣

∣

∣

∣

q−s

.

By differentiating this equation twice with respect to ξ,

(4.5)
∂2

∂ξ2

(

1

2πi

∫

γ

w1dg̃

w0g̃

)

=
∂2

∂ξ2

(

∑

j

f+
j (ξ, η) −

∑

j

f−
j (ξ, η)

)

.

Observe that
∫

γ
w1dw0

w2
0

is constant with respect to ξ. With the previous equations we

see that (4.2) holds.

It only remains to be shown that each f±
j in fact satisfies the shockwave equation.

While there are multiple means to achieve this, we present here a geometrical expla-

nation. (In Dolbeault and Henkin a more formulaic demonstration is given, which

they attribute to Darboux, [7].)

Let (ξ0, η0) be a point in Ω. Let f be one f±
j , and p be the corresponding p±j . Let

h = f(ξ0, η0). By definition p(ξ0, η0) = (h, ξ0+η0h) is contained inW ·{z2 = ξ0+η0z1}

for some component W of V . Therefore p(ξ0, η0) is in W · {z2 = (ξ0−τh)+(η+τ)z1}

for τ such that (ξ0 − τh, η + τ) ∈ Ω. For τ near 0, p(ξ0 − τh, η0 + τ) = p(ξ0, η0) and

accordingly

(4.6) f(ξ0 − τf(ξ0, η0), η0 + τ) = f(ξ0, η0).
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(Remark: This says f is constant along lines of the form (ξ−ξ0)+f(ξ0, η0)(η−η0) =

0. In the terminology of partial differential equations, this prescribes a differential

equation with characteristics of this form, along which solutions are constant.)

Equation (4.6) holds for all (ξ0, η0) in Ω for small τ . Differentiation with respect

to τ and evaluation at τ = 0 of (4.6) yields that

(4.7) fξ(ξ0, η0)(−f(ξ0, η0)) + fη(ξ0, η0) = 0.

This implies that f satisfies the s.w. partial differential equation on Ω.

�

So a holomorphic 1-chain in CP2 has its behavior near the line {w2 = ξ∗w0+η
∗w1}

“encoded” in the functions f±
j (ξ, η) near (ξ∗, η∗). We refer to the line {w2 = ξ∗w0 +

η∗w1} as the perspective line, as this suggests its geometric role.

Since γ ⊆ C2, if V is a holomorphic 1-chain bounded by γ within CP2, then

any component of V contained in the line at infinity, {w0 = 0}, must be the entire

analytic variety {w0 = 0}. Subtracting these from V does change that γ bounds V .

So if γ bounds within CP2, it will bound a holomorphic 1-chain with no components

contained in the line at infinity.

(For ease of notation, we may drop the plus and minus superscripts, understanding

the discussion equally applies to both. So fj may be used in place of f±
j .)

If the perspective line is locally transverse to V and does not intersect V at

the line at infinity, then since these are open properties, Lemma IV.2 implies that

condition (ii) of Theorem IV.1 holds for any appropriately small neighborhood of

(ξ∗, η∗). With Theorem IV.1 in its present form, neither of these qualifications on the

choice of the perspective line can be removed. Locally non-transverse intersections

of the perspective line with V obstruct some of the fj from being single-valued.
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Intersections of V with the perspective line at infinity obstruct some fj from being

analytic due to an infinite limit at (ξ∗, η∗). We will address this further in Chapter VI.

Equation (4.2) may be interpreted as a decomposition of Gγ permitting a ξ-

affine discrepancy. For notational brevity, we will call this a ξ2-decomposition of Gγ .

One value of Lemma IV.2 and its proof is that it associates holomorphic 1-chains

bounded by γ to local ξ2-decompositions of Gγ by s.w. solutions. To state this more

technically, we introduce the following definitions.

Define HCγ to be the Z-affine space of holomorphic 1-chains that have no com-

ponents contained in {w0 = 0} and that are bounded by γ within CP2. This is

contained in the Z-module (or lattice) of holomorphic chains in CP2\ spt γ. (We

say H is Z-affine if for any cj ∈ Z such that
∑

j cj = 1 and for any vj ∈ H , then

∑

cjvj ∈ H , or equivalently for some v ∈ H , H − v is Z-linear.) For (ξ∗, η∗) ∈ Uγ ,

define HCγ,(ξ∗,η∗) to be the Z-affine subspace in HCγ of all holomorphic 1-chains in

HCγ having only points of intersection with the line {w2 = ξ∗w0 + η∗w1} that are

locally transverse and do not occur at the line at infinity.

Define SW(ξ∗,η∗) to be the Z-module of formal Z-linear combinations of germs of

analytic functions satisfying the s.w. equation ffξ = fη around (ξ∗, η∗). (This is also

the free Z-module with fore-said germs as formal generators). Define O(ξ∗,η∗) to be

the ring (also a Z-module) of germs of analytic functions about (ξ∗, η∗). SW(ξ∗,η∗)

has a natural (Z-module) homomorphism into O(ξ,η) given by mapping each formal

representative to the germ it symbolically represents.

We now pause to define the notions of formal and non-formal equivalence. For-

mal equivalence of two elements in SW(ξ∗,η∗) is the usual equality understood among

elements of SW(ξ∗,η∗). Non-formal equivalence of two elements in SW(ξ∗,η∗) is equiv-

alence after application of the natural homomorphism into O(ξ∗,η∗). To illustrate the
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difference, let’s consider the following examples. Note that the constant functions

are solutions to the shockwave equation. So 0, 1, and 2 are elements of SW(ξ∗,η∗).

1 + 1 − 0 equals 2 non-formally, but not formally. The expression 1 + 1 − 0 could

also be expressed as (and is formally equivalent to) 2 · 1 + (−1) · 0. Also note that 0

(the zero of the formal ring) and 0 (the formal representative of the zero germ) are

distinct formally though they are non-formally equal.

Define SW(ξ∗,η∗),G to be the Z-affine subspace of SW(ξ∗,η∗) whose elements non-

formally agree with G in the second derivative with respect to ξ. SW(ξ∗,η∗),G signifies

the space of ξ2-decompositions of G about (ξ∗, η∗) by s.w. solutions.

We assume γ and (ξ∗, η∗) are fixed and define ϕ : HCγ,(ξ∗,η∗) → SW(ξ∗,η∗),Gγ
to be

the map prescribed by the proof of Lemma IV.2. It is a basic observation that ϕ is

a Z-affine map. Now our objective is to show that ϕ is an isomorphism.

Lemma IV.3. ϕ is surjective.

Proof: In [8], sections 3 and 4 regarding the Condition suffisante dans CP2, Dol-

beault and Henkin provide a procedure for constructing a holomorphic 1-chain V

bounded by γ from a decomposition
∑

j f
+
j −

∑

j f
−
j of Gγ . This procedure need

only be slightly modified (with methods seen in [9]) to use a ξ2-decomposition in

place of an ordinary decomposition. (In particular Proposition 3.2 of [8] may be

weakened by allowing Pm to be a polynomial in ξ of degree at most m (instead of

m− 2). This is comparable to Proposition 3.3.3 of [9].) As this procedure is rather

lengthy we do not provide it here and instead leave the reader with the description

above.
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Define ψ : SW(ξ∗,η∗),Gγ
→ HCγ,(ξ∗,η∗) to be the map produced from this procedure.

An examination of the procedure yields that ϕ ◦ ψ = id.

�

Lemma IV.4. ϕ is injective.

Sublemma IV.5. Let V be an element of HCγ,(ξ∗,η∗). ϕ(V ) = 0 if and only if sptV ∩

{w2 = ξ∗w0 + η∗w1} = ∅.

Proof (of Sublemma): Let V be an element of HCγ,(ξ∗,η∗). Note ϕ(V ) = 0 implies

that the line {w2 = ξw0 + ηw1} doesn’t intersect V for (ξ, η) near (ξ∗, η∗). Thus a

open neighborhood of {w2 = ξ∗w0 + η∗w1} can be formed by a union of lines nearby

in (CP2)′, none of which intersect V , thus spt V ∩ {w2 = ξ∗w0 + η∗w1} = ∅.

The converse can be seen by reversing the previous argument.

�

Proof (of Lemma): Suppose V1 and V2 are two holomorphic 1-chains in HCγ,(ξ∗,η∗)

such that ϕ(V1) = ϕ(V2). Let V = V1 − V2, which is a holomorphic 1-chain in

CP2\ spt γ. Using Theorem 2.1 of [18], it holds V is a holomorphic 1-chain in CP2

and in particular is an element of HC∅,(ξ∗,η∗). Define ϕ′ : HC∅,(ξ∗,η∗) → SW(ξ∗,η∗),0 as

the map ϕ for the case γ = ∅. Note ϕ′(V ) = ϕ(V1) − ϕ(V2) = 0 (in the full formal

sense).

By Sublemma IV.5, spt V avoids the line w2 = ξ∗w0+η
∗w1. Thus V is a compactly

supported holomorphic 1-chain in CP2\{w2 = ξ∗w0 + η∗w1}. Therefore V = 0 since

CP2\{w2 = ξ∗w0 + η∗w1} is Stein. (Given we are in CP2, this last step of the proof
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could alternately be achieved by applying Chow’s Theorem and Bezout’s theorem.)

�

Theorem IV.6. The Z-affine spaces HCγ,(ξ∗,η∗) and SW(ξ∗,η∗),Gγ
are isomorphic via

the map ϕ.

Proof: Combine Lemma IV.3 and Lemma IV.4.

�

(Remark: Theorem IV.1 may now be derived as a corollary to Theorem IV.6.)

For (ξ∗, η∗) ∈ Uγ the holomorphic 1-chains in HCγ,(ξ∗,η∗) can be isomorphically

encoded (via ϕ) as the formal ξ2-decompositions of Gγ by s.w. solutions near (ξ∗, η∗).

As pj(ξ, η) = (fj(ξ, η), ξ + ηfj(ξ, η)), the formal ξ2-decomposition will describe the

structure of the corresponding holomorphic 1-chain near the perspective line. (This

can also be seen as a consequence of Sublemma IV.5.) This is the essence of the

isomorphism ϕ.

One implication of this is that the existence of a holomorphic 1-chain bounded

by γ with some prescribed behavior near the perspective line directly correlates to

the existence of a corresponding formal ξ2-decomposition of Gγ by s.w. solutions

locally about (ξ∗, η∗). By knowing how holomorphic 1-chain structure is encoded in

s.w. equations, we may employ this correlation for further uses. The next section

shows one immediate application of this principle in producing a characterization of

boundaries of holomorphic 1-chains within C×CP1. (We will study this principle in

fuller depth in Chapter VII.)



CHAPTER V

Characterizations within Ĉ × Ĉ and C × Ĉ via Birational

Maps

The spaces Ĉ×Ĉ and CP2 are birationally equivalent. (Ĉ denotes CP1.) One sim-

ple result of this is a characterization within Ĉ× Ĉ derived from the characterization

within CP2. But we can employ birational equivalence for more novel applications.

In particular the previous section established a correspondence between the local

behavior about a line of certain holomorphic 1-chains bounded by γ within CP2

and local formal s.w. ξ2-decompositions of Gγ. Using this correspondence and the

structure of a class of birational maps between CP2 and Ĉ× Ĉ, we produce the first

characterization within C × Ĉ.

The first point we make is that birational maps treat the boundaries of holo-

morphic 1-chains reasonably well. Let X and Y be two complex surfaces. And

let φ : X − − → Y be a birational map. φ gives a biholomorphism between

X\(I(φ) ∪ C(φ)) and Y \(I(φ−1) ∪ C(φ−1)). So away from the critical and inde-

terminacy sets φ∗ provides a correspondence between ordinary topological chains.

Holomorphic 1-chains on X can be mapped to holomorphic 1-chains on Y via either

the total or proper transform, even if it should encounter the critical or indetermi-

nacy set. Summarily the notion of the boundary of a holomorphic chain transforms

well so long as the boundary (but not necessarily the holomorphic chain itself) avoids

24
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the critical and indeterminacy sets.

Theorem V.1. Let X and Y be quasiprojective varieties of complex dimension 2

which are birationally equivalent via the map φ : X − − → Y . Let γ be a closed,

oriented, C2 real 1-chain in X\(C(φ) ∪ I(φ)). (Note: φ∗γ is a closed, oriented, C2

real 1-chain in Y \(C(φ−1) ∪ I(φ−1)).) γ bounds within X if and only if φ∗γ bounds

within Y .

Proof: As (φ∗)
−1 = (φ−1)∗, it suffices to prove the theorem in one direction. Sup-

pose γ bounds a holomorphic chain S within X. We may locally define a holomor-

phic chain T in Y \ spt(φ∗γ) by taking the proper transform (or the total transform)

through φ of S near C(φ)∪I(φ). Away from the critical and indeterminacy sets, this

agrees with φ∗(V ), as here φ is biholomorphic. The simple extension of [T ] to Y and

d[T ] = [φ∗γ] will hold due to the simple extension of [S] to X and d[S] = [γ] by the

local behavior of currents under biholomorphism. The set sptT is relatively compact

in Y due to sptS being relatively compact in X (if using the total transform, then

we additionally need the compactness of the exceptional divisors).

�

While the total transform may be used for the above, our preference is for the

proper transform, as this permits a simple formulation in terms of algebraic objects.

For V an analytic variety in X avoiding spt γ, define HCX,V
γ to mean the Z-module

or lattice of holomorphic 1-chains that are bounded by γ within X and that have no

components contained in V . For instance note HCγ = HCCP
2,V(w0)

γ .

Theorem V.2. Let X and Y be quasiprojective varieties of complex dimension 2

which are birationally equivalent via the map φ : X − − → Y . Let γ be a closed,
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oriented, C2 real 1-chain in X\(C(φ) ∪ I(φ)). Then HCX,C(φ)
γ

∼= HC
Y,C(φ−1)
φ∗(γ) via the

proper transform through φ.

Proof: Simply use the proof of the previous theorem. Only two items might

prevent the proper transform through φ from being an isomorphism. One is that

components contained in C(φ) collapse to points in I(φ−1). The other is that the

proper transform never produces components in C(φ−1) with non-zero multiplicity.

But these are exactly the components we have excluded from consideration. For

linear combinations of all other components, the proper transforms through φ and

through φ−1 are inverses.

�

Next we establish the following notation. Let Ĉ = CP1 and C∗ = C\{0}. For

Ĉ × Ĉ we’ll conventionally use homogeneous coordinates (z0 : z1) × (w0 : w1) and

for C2 ⊂ Ĉ × Ĉ, we use affine coordinates (z, w) = (z1/z0, w1/w0). For CP2, we

use homogeneous coordinates (w̆0 : w̆1 : w̆2), with corresponding affine coordinates

(z̆1, z̆2) for C2 ⊂ CP2. This notation for CP2 is parallel to that used in the previous

chapter.

It should be noted that CP2 and Ĉ× Ĉ are birationally equivalent. This can quite

easily be seen by the birational map Ĉ × Ĉ − − → CP2 given by (z0 : z1) × (w0 :

w1) 7→ (z0w0 : z1w0 : z0w1). This restricts to a map on affine piece C2, given as

(z, w) 7→ (z, w). The critical set of this map is V(z0w0) and the indeterminacy set is

V(z0, w0). Note that the union of the critical and indeterminacy sets of the inverse

map is the line at infinity. We derive the following corollary to Theorem V.2.
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Corollary V.3. For γ a closed, oriented, C2 real 1-chain in C2,

HCĈ×Ĉ,V(z0w0)
γ

∼= HCCP
2,V(w̆0)

γ = HCγ .

From this we give a characterization within Ĉ × Ĉ.

Theorem V.4. For γ a closed, oriented, C2 real 1-chain in C × C ⊂ Ĉ × Ĉ, the

following are equivalent:

1. γ bounds a holomorphic 1-chain within Ĉ × Ĉ

2. (condition (ii) of Theorem IV.1)

∃ (ξ∗, η∗) with some neighborhood Ω such that ∃ integers N+ and N− and func-

tions f+
j (ξ, η) for 1 ≤ j ≤ N+ and f−

j (ξ, η) for 1 ≤ j ≤ N− that are defined on

Ω, analytic in (ξ, η), and satisfy the shockwave equation, ffξ = fη, (f = f±
j ),

such that on Ω,

(5.1)
∂2

∂ξ2
Gγ(ξ, η) =

∂2

∂ξ2

(

N+
∑

j=1

f+
j (ξ, η) −

N−

∑

j=1

f−
j (ξ, η)

)

,

where Gγ is given by (4.1).

Proof: Use the previous corollary and apply Theorem IV.1.

�

To produce a characterization within C × Ĉ, we examine a class of birational

maps between Ĉ × Ĉ and CP2. Define φυ : Ĉ × Ĉ − − → CP2 by φυ : (z0 :

z1) × (w0 : w1) 7→ (z0w1 : z1(w0 − υw1) : z0(w0 − υw1)). On the natural affine

pieces of these spaces the map φ can be expressed in non-homogeneous coordinates

as φυ|C2 : (z, w) 7→ (z( 1
w
− υ), 1

w
− υ). This can be seen to be a birational map. The

inverse map can be given as φ−1
υ : CP2 − − → Ĉ × Ĉ with φ−1

υ : (w̆0 : w̆1 : w̆2) 7→
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(w̆2 : w̆1)× (w̆2 + υw̆0 : w̆0). The inverse map can also be defined by the map on the

affine C2 in CP2 given as φ−1
υ |C2 : (z̆1, z̆2) 7→ ( z̆1

z̆2
, 1

z̆2+υ
).

We point out several of the properties concerning φ. The lines {z0 = 0} and

{w0 = υw1} blow down to the points (0 : 1 : 0) and (1 : 0 : 0), respectively. The

point (0 : 1) × (υ : 1) blows up to the line {w̆2 = 0} in CP2. The map φ may be

factored as a composition of a blow-up at (0 : 1) × (υ : 1) followed by two blow-

downs along the proper transforms (through the blow-up) of V(z0) and V(w0−υw1).

Note C(φυ) = V(z0(w0 − υw1)), I(φυ) = (0 : 1) × (υ : 1), C(φ−1
υ ) = V(w̆2), and

I(φ−1
υ ) = {(0 : 1 : 0), (1 : 0 : 0)}.

We now discuss the concepts of tangential and non-tangential contact. Let V and

W be two analytic varieties of dimension 1 (or for that matter, two holomorphic

1-chains) in a space of complex dimension two. Suppose that V and W intersect at a

point p. We say V and W intersect with non-tangential contact if the tangent cones

of V and W intersect trivially, that is at their zero point. Likewise we say V and W

intersect with tangential contact if their tangent cones intersect non-trivially, that

is, they contain a common complex line. Note that a locally transverse intersection

implies an intersection of non-tangential contact, but not conversely. For instance

in C2, V(w2 − z3) and V(z) intersect at (0, 0) with non-tangential contact, but not

locally transversally.

We return our attention to φυ. Let V be a local piece of analytic variety and

W its proper transform through φυ. Away from C(φυ) ∪ I(φυ) = V(z0(w0 − υw1)),

the biholomorphic nature of φυ can be used to easily understand the transform of V

to W . Near V(z0(w0 − υw1)), we need to examine the birational structure of φυ to

understand the nature of its proper transform.

Recall our previous factorization of φυ into a blow-up and two blow-downs. From
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this we deduce the following statements. V intersects the line V(w0 − υw1) away

from (0 : 1)× (υ : 1) if and only if W intersects the line V(w̆2) at (1 : 0 : 0) with non-

tangential contact. Similarly, V intersects the line V(z0) away from (0 : 1) × (υ : 1)

if and only if W intersects the line V(w̆2) at (0 : 1 : 0) with non-tangential contact.

V intersects V(w0 − υw1) with tangential contact at (0 : 1) × (υ : 1) if and only

if W intersects V(w̆2) at (1 : 0 : 0) with tangential contact. In parallel fashion, V

intersects V(z0) with tangential contact at (0 : 1)× (υ : 1) if and only if W intersects

V(w̆2) at (0 : 1 : 0) with tangential contact. V intersects both V(w0 − υw1) and

V(z0) (or simply V(z0(w0 − υw1))) at (0 : 1) × (υ : 1) with non-tangential contact if

and only if W intersects V(w̆2) neither at (1 : 0 : 0) nor (0 : 1 : 0). These statements

exhaustively categorize the behavior of V near V(z0(w0 − υw1)) and W near V(w̆2).

We encode these observations in terms of algebraic objects. First Theorem V.2

implies that

(5.2) HCĈ×Ĉ,V(z0(w0−υw1))
γ

∼= HC
CP

2,V(w̆2)
(φυ)∗γ

via the proper transform due to φυ.

Next we confine the holomorphic 1-chains being considered to use of the scope of

our knowledge, which is in HCγ. Thus we remove from the right hand object any

chains containing components in the line at infinity, and to preserve an isomorphism,

we remove from the left hand object any chains with components in V(w1), the pre-

image of V(w̆0) under φυ. Thus

(5.3) HCĈ×Ĉ,V(z0w1(w0−υw1))
γ

∼= HC
CP

2,V(w̆0w̆2)
(φυ)∗γ .

Now we restrict the left side to the holomorphic 1-chain bounded by γ within

C × Ĉ. This will yield HCC×Ĉ,V(w1(w0−υw1))
γ on the left. Define HC′

γ to be the Z-

affine space of all holomorphic 1-chains bounded by γ within CP2 that contain no
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components in V(w̆0) and that only intersect V(w̆2) with non-tangential contact at

(1 : 0 : 0) (an empty intersection qualifies). By the previous observations concerning

the behavior of holomorphic chains near V(z0(w0 − υw1)), this is the correspondent

to HCC×Ĉ,V(w1(w0−υw1))
γ within the previous isomorphism. Explicitly stated,

(5.4) HCC×Ĉ,V(w1(w0−υw1))
γ

∼= HC′
(φυ)∗γ.

If we had direct knowledge of HCγ we could halt here, but we need to be within

HCγ,(0,0) to make any use of Theorem IV.6. The only qualification that remains to be

satisfied is that our holomorphic 1-chains in CP2 need to intersect the line {w̆2 = 0}

locally transversally. Non-tangential contact does not imply this. However local

transverse intersections with V(w0 −υw1) equates with local transverse intersections

with V(w̆2) at (1 : 0 : 0) through the proper transform. So define HCC×Ĉ

γ,υ to consist

of all holomorphic 1-chains bounded by γ within C× Ĉ that contain no components

in V(w1) and which are locally transverse to V(w0 − υw1). And define HC′′
γ to be

all holomorphic 1-chains bounded by γ within CP2 that contain no components in

V(w̆0) and that have only locally transverse intersections with V(w̆2) at (1 : 0 : 0).

We may restrict the above isomorphism to our working isomorphism, namely

(5.5) HCC×Ĉ

γ,υ
∼= HC′′

(φυ)∗γ .

We can recapitulate the previous isomorphisms and inclusions in the following.

(5.6)

HCC×Ĉ

γ,υ
⊂

−−−→ HCC×Ĉ,V(w1(w0−υw1))
γ

⊂
−−−→ HCĈ×Ĉ,V(z0w1(w0−υw1))

γ

∼=





y

∼=





y

∼=





y

HC′′
(φυ)∗γ

⊂
−−−→ HC′

(φυ)∗γ
⊂

−−−→ HC
CP

2,V(w̆0w̆2)
(φυ)∗γ

Set (ξ∗, η∗) = (0, 0), consider υ fixed, and let γ′ = (φυ)∗γ. Using Theorem IV.6,

note HC′′
γ′ ⊂ HCγ′,(0,0)

ϕ
∼= SW(0,0),Gγ′

. So we now reveal a description for ϕ(HC′′
γ′).
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Let V ∈ HC′′
γ′ . By local transversality of the intersection of V between {w̆2 = 0}, V

is locally (near {w2 = 0}) the formal linear combination of analytic varieties, each

intersecting {w̆2 = 0} transversely at (1 : 0 : 0). Let W be one of these local portions

with a corresponding shockwave solution given as f(ξ, η). Then for η close enough to

0, each line of the form {w̆2 = ηw̆1} will intersect W transversally and at (1 : 0 : 0).

Recognizing the construction of the shockwaves in Lemma IV.2, we conclude that

f(ξ, η) must vanish along ξ = 0. (Alternately we could note that f(0, 0) = 0 and

use that shockwave solutions are constant along its characteristic lines to show that

f must locally vanish along ξ = 0.)

Let SW′′
(0,0) denote the formal Z-linear combinations of local shockwave solutions

which vanish along ξ = 0. Let SW′′
(0,0),G denote the Z affine subspace of those which

non-formally agree with G in the second derivative with respect to ξ. What we said

previously may be stated as

(5.7) HC′′
γ′

ϕ
∼= SW′′

(0,0),Gγ′

So with (5.5) we have that

(5.8) HCC×Ĉ

γ,υ
∼= HC′′

(φυ)∗γ
∼= SW′′

(0,0),G(φυ)∗γ
.

From this, we now state the following characterization of boundaries of holomor-

phic chains in C × Ĉ.

Theorem V.5. For γ a closed, oriented, C2 real 1-chain in C × C∗ ⊂ C × Ĉ, the

following are equivalent:

1. γ bounds a holomorphic 1-chain within C × Ĉ

2. ∃ υ with {w0 = υw1}∩ spt γ = ∅ and a neighborhood Ω (with coordinates (ξ, η))

of (0, 0) such that ∃ integers N+ and N− and functions f+
j (ξ, η) for 1 ≤ j ≤ N+
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and f−
j (ξ, η) for 1 ≤ j ≤ N− that are defined on Ω, analytic in (ξ, η), satisfy

the shockwave equation, ffξ = fη, (f = f±
j ), and vanish when ξ = 0 such that

on Ω,

(5.9)

∂2

∂ξ2

(

1

2πi

∫

γ

z
w

1−υw

d(1 − ξ w
1−υw

− ηz)

1 − ξ w
1−υw

− ηz

)

=
∂2

∂ξ2

[

N+
∑

j=1

f+
j (ξ, η) −

N−

∑

j=1

f−
j (ξ, η)

]

Proof: Condition 1 is equivalent to HCC×Ĉ,∅
γ being nonempty. Since γ lies in

C×C∗, this is equivalent to HCC×Ĉ,V(w1(w0−υw1))
γ being nonempty for any υ such that

{w0 = υw1} ∩ spt γ = ∅. This is in turn equivalent to the non-emptiness of HCC×Ĉ

γ,υ

for a generic choice of such υ. This is equivalent to condition 2 due to (5.8) and the

following calculation.

(5.10)
∂2

∂ξ2
Gφ∗(γ) =

∂2

∂ξ2

(

1

2πi

∫

γ

z(
1

w
− υ)

d(( 1
w
− υ) − ξ − ηz( 1

w
− υ))

( 1
w
− υ) − ξ − ηz( 1

w
− υ)

)

=
∂2

∂ξ2

(

1

2πi

∫

γ

z(1 − υw)

w

d(1 − ξ w
1−υw

− ηz)

1 − ξ w
1−υw

− ηz
+

1

2πi

∫

γ

z(1 − υw)

w

d(1−υw
w

)
1−υw

w

)

=
∂2

∂ξ2

(

1

2πi

∫

γ

z
w

1−υw

d(1 − ξ w
1−υw

− ηz)

1 − ξ w
1−υw

− ηz

)

.

�

Remark: After the results of the coming chapter, we can pose theorems that allow

us to fix a value of υ, rather than handling it generically. Specifically Theorem VII.4

is a corresponding result with υ fixed as zero.



CHAPTER VI

Other Characterizations within CP2

We now return to the study of characterizations within CP2. We present some

additional characterizations that provide some improvements upon Theorem IV.1

and Theorem IV.6.

One weakness of Theorem IV.1 is that it does not permit the perspective line

{w2 = ξ∗w0 + η∗w1} to be a priori fixed for testing condition (ii). We see from

Lemma IV.2 that if γ bounds some V within CP2, then any choice of (ξ∗, η∗) in

Uγ\(TV ∪IV ) would yield a successful validation of (ii). But having foreknowledge of

a V bounded by γ also precludes the point of using (ii) to establish (i). As it stands,

there is not an apparent way to determine solely from γ as to which (ξ∗, η∗) may be

used to satisfy (ii). Significantly, demonstrating failure of (ii) requires showing the

absence of a s.w. ξ2-decomposition of Gγ about a “substantial” set of (ξ∗, η∗) in Uγ .

(With simply the statement of Theorem IV.1 this substantial set must be all (ξ∗, η∗)

in Uγ . With Lemma IV.2 this substantial set could be reduced to any subset of Uγ

that is not contained in a proper analytic variety of Uγ .)

This can be expressed through the algebraic terminology used for Theorem IV.6.

Condition (ii) of Theorem IV.1 is equivalent to HCγ,(ξ∗,η∗) 6= ∅ for some (ξ∗, η∗) ∈

Uγ . Note HCγ,(ξ∗,η∗) ( HCγ unless HCγ = ∅; If V is in HCγ,(ξ∗,η∗) then V + kW ,

33
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k 6= 0 is in HCγ\HCγ,(ξ∗,η∗), where W is any algebraic variety, excluding w0 = 0,

tangent to {w2 = ξ∗w0 + η∗w1} or containing the point (0 : 1 : η∗). In fact it may

occur that HCγ,(ξ∗,η∗) = ∅ for certain (ξ∗, η∗) while HCγ is not. (If HCγ is non-

empty, it is infinite dimensional.) As an example, consider γ to be the graph of the

exponential map z2 = exp(z1) over the unit circle {z1 | |z1| = 1}. HCγ consists of the

holomorphic 1-chains that are representable as the graph of the exponential function

over the unit disc {z1 | |z1| < 1} plus a linear combination of algebraic varieties,

excluding w0 = 0. Due to tangency considerations, none of these holomorphic 1-

chains are in HCγ,(1,1). So HCγ,(1,1) is empty. (In fact, by similar reasoning it can be

shown that HCγ,((1−τ)eτ ,eτ ) is empty for |τ | < 1.) As this example reveals, the info

HCγ,(ξ∗,η∗) communicates about HCγ may be nonexistent for some values of (ξ∗, η∗).

Furthermore it is not apparent for which (ξ∗, η∗) this situation holds unless HCγ has

already been determined.

In light of this, we desire a condition equivalent to (i) that would only need

testing about one (ξ∗, η∗) in Uγ , preferably one of our own choosing. To achieve this

we provide a modification (a weakening) of condition (ii) that isn’t subject to the

requirement that (ξ∗, η∗) be chosen outside of TV and IV for some V . In the algebraic

terminology, we extend the isomorphism ϕ between HCγ,(ξ∗,η∗) and SW(ξ∗,η∗),Gγ
to an

isomorphism between HCγ and some broader class of “decompositions”.

First we address the case of tangential intersections (which prohibited (ξ∗, η∗)

from being chosen within TV ). To handle this, we consider the elementary symmetric

polynomials of fj, instead of dealing with the fj as individually well-defined functions.

Accordingly, we translate the shockwave condition on each fj into its equivalent

condition on ej, the elementary symmetric polynomials of fj

Lemma VI.1. Let f1, f2, . . . , fN be continuous functions defined on some domain
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Ω. Let e1, e2, . . . be the elementary symmetric polynomials of these functions. (Note:

ek = 0 for k > N .) The following are equivalent.

1. The functions f1, f2, . . . , fN are analytic and satisfy the s.w. (shockwave) partial

differential equation,

(6.1) fj(fj)ξ = (fj)η, for 1 ≤ j ≤ N

2. The functions e1, e2, . . . , eN are analytic and satisfy the e.s.p.s.w. (elemen-

tary symmetric polynomials of shockwave solutions) system of partial differential

equations, defined as

(6.2) (e1)ξek − (ek+1)ξ = (ek)η, for 1 ≤ k ≤ N, (with eN+1 := 0).

Proof: Assume 1. Then the analyticity of the ek is clear and 2 follows by the

following calculation.

(e1)ξek − (ek+1)ξ =

(

N
∑

ℓ=1

(fℓ)ξ

)

∑

i1<···<ik

fi1 · · · fik −





∑

i1<···<ik+1

fi1 · · · fik+1





ξ

=
∑

i1<···<ik

N
∑

ℓ=1

(fℓ)ξfi1 · · · fik −
∑

i1<···<ik

∑

ℓ/∈{i1,...,ik}

(fℓ)ξfi1 · · · fik

=
∑

i1<···<ik

∑

ℓ∈{i1,...,ik}

(fℓ)ηfi1 · · · f̂ℓ · · · fik = (ek)η

Now assume 2. The fj are solutions to the polynomial with coefficients holomor-

phic in (ξ, η) given by

(6.3) ζN − e1ζ
N−1 + · · ·+ (−1)NeN = 0

Analyticity of the fj (off of a set, with codimension 1 in Ω, given as the union of

vanishing sets of the discriminants of the irreducible factors of the above) follows
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from an argument similar to that presented in [2], Chapter 8, Section 2, which

gives that solutions to polynomial equations with polynomial coefficients give locally

holomorphic functions. As the fj are a priori single-valued and continuous and by a

removable singularities argument, the fj are holomorphic on Ω.

Let (ξ∗, η∗) be any point in Ω. Let f̃j = fj |η=η∗ and ẽk = ek|η=η∗ , be analytic func-

tions in ξ on Ω̃ = Ω ∩ {η = η∗}. We point out that the Cauchy-Kovalevski theorem

applies to both the s.w. equation and the e.s.p.s.w. system of equations with analytic

Cauchy data along Ω̃. (For our present purpose the form of the Cauchy-Kovalevski

theorem given in [12], pg.16 is particularly well-suited.) Using the Cauchy-Kovalevski

Theorem, we define Fj as the unique analytic function satisfying the s.w. differential

equation on some neighborhood Ω′ of (ξ∗, η∗) in Ω with the initial condition that

Fj and f̃j agree on Ω̃ ∩ Ω′. Define Ek as the elementary symmetric functions of Fj .

Note that Ek and ẽk agree on Ω̃ ∩ Ω′ and that by the previous implication Ek also

satisfies the e.s.p.s.w. system of differential equations. Using the Cauchy-Kovalevski

theorem, we see that Ej and ej agree on Ω′. By the equality of the elementary sym-

metric polynomials of {fj} and {Fj}, their analyticity on Ω′, and the agreement of

fj and Fj on Ω̃∩Ω′, we have that fj equals Fj on Ω′. Thus each fj satisfies the s.w.

equation.

�

Now we formulate a elementary symmetric polynomial version of condition (ii)

in Theorem IV.1. This new condition does not require that the perspective line be

chosen to locally transversally intersect some holomorphic 1-chain bounded by γ.

This allows more freedom on the choice of (ξ∗, η∗).

Theorem VI.2. For γ a closed, oriented, C2 real 1-chain in C2 ⊂ CP2, the following
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are equivalent:

(i) γ bounds a holomorphic 1-chain within CP2

(iii) ∃ (ξ∗, η∗) with some neighborhood Ω such that ∃ non-negative integers N+ and

N− and functions e+k (ξ, η) for 1 ≤ k ≤ N+ and e−k (ξ, η) for 1 ≤ k ≤ N− that are

defined on Ω, analytic in (ξ, η), and satisfy the e.s.p.s.w. system of differential

equations, (ek+1)ξ +(ek)η = (e1)ξek, ∀k ≥ 1, (e = e±k ), (treating e±N±+1 = 0) such

that on Ω,

(6.4)
∂2

∂ξ2
Gγ(ξ, η) =

∂2

∂ξ2

(

e+1 (ξ, η) − e−1 (ξ, η)
)

(iii’) ∃ η∗ with neighborhood Ωη such that any (ξ∗, η∗) with any connected neighborhood

Ω ⊆ Uγ ∩ (C × Ωη) satisfies (iii).

Before demonstrating the proof we establish the following lemma, an analog of

Lemma IV.2. Recall the definitions for Uγ, TV , and IV given for that lemma.

Lemma VI.3. Let V be a holomorphic 1-chain bounded by γ within CP2 and con-

taining no components in the line at infinity, w0 = 0. For Ω any component of Uγ\IV ,

there exist nonnegative integers N+ and N− and two sets of functions e+1 , e
+
2 , . . . , e

+
N+

and e−1 , e
−
2 , . . . , e

−
N− well-defined, analytic in (ξ, η), and satisfying the e.s.p.s.w. equa-

tions (that is (6.2)) on Ω, for which (6.4) holds.

Proof (of Lemma): On Ω define e+k (ξ, η) (resp. e−k (ξ, η)) to be the kth elementary

symmetric function of the z1 coordinates of positive (resp. negative) intersections,

counting multiplicities, of the holomorphic chain V with line w2 = ξw0 + ηw1. Also

define N+(ξ, η) (resp. N−(ξ, η)) to be the degree of such intersection. N+ and

N− are locally constant and hence constant over Ω. The e±k are guaranteed to be
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well-defined and continuous functions on Ω since Ω ⊆ Uγ\IV . We understand by

locally applying Lemma IV.2 and Lemma VI.1 that the e±k are analytic, satisfy the

e.s.p.s.w. system of equations and satisfy (6.4) on Ω\TV . Lemma 3 of [27] implies

these properties extend to over all Ω.

�

Proof (of Theorem): Note (iii’) =⇒ (iii) is clear and (i) =⇒ (iii’) follows

from Lemma VI.3 and the observation that for (ξ, η) ∈ Uγ to lie in IV is a property

independent of ξ. It remains to show (iii) =⇒ (i). With Theorem IV.1 it will suffice

to show (iii) =⇒ (ii).

Let (ξ∗, η∗), Ω, N+, N−, e+1 , . . . , e
+
N+ , and e−1 , . . . , e

−
N− be chosen in satisfying

(iii). Define O(Ω) as the ring of holomorphic functions on Ω. Define the monic

polynomials Q+ and Q− in O(Ω)[z] by the equation Q(z) = zN − e1z
N−1 + e2z

N−2 −

· · · + (−1)NeN , where Q = Q±, N = N±, and ek = e±k . Factor Q into irreducible

factors Q1, Q2, . . . , Qs and define Dt to be the discriminant of Qt. Each Dt is an

analytic function in (ξ, η) and vanishes wherever its corresponding factor Qt does

not have distinct roots. Since each Qt is irreducible, no Dt is identically zero. By

shrinking the neighborhood Ω and selecting a new (ξ∗, η∗), if necessary, we can assume

to have non-vanishing discriminants for all irreducible factors of Q+ and Q− and that

Ω is simply connected. Then we can define single-valued analytic functions f±
j on

Ω as the roots of Q± counting multiplicity. Note the kth elementary symmetric

polynomial of the functions fj will be ek. By Lemma VI.1, we then conclude each fj

satisfies the s.w. equation. To conclude simply note that (6.4) implies (4.2).

�

Second we address the case of intersections between holomorphic 1-chains bounded
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by γ and the perspective line occurring at the line at ∞. To handle this situation

we express the elementary symmetric polynomials in a homogenized form. In place

of e1, e2, . . . , eN , we use P0, P1, P2, . . . , PN , where Pk

P0
= ek. Now we translate the

e.s.p.s.w. system of equations into one expressed in this new form.

Lemma VI.4. Let e1, e2, . . . , eN (eN+1 = 0) be functions defined on some domain

Ω. Let P0, P1, P2, . . . , PN (PN+1 = 0) be functions defined by Pk = ekP0, where P0 is

not identically zero. The following are equivalent.

1. The functions e1, e2, . . . , eN and P0 are analytic and satisfy the e.s.p.s.w. system

of differential equations,

(6.5) (e1)ξek − (ek+1)ξ = (ek)η, for 1 ≤ k ≤ N.

2. The functions P0, P1, . . . , PN are analytic, P0 divides each function Pj within

O(Ω), and P0, P1, . . . , PN satisfy the h.e.s.p.s.w. (homogenized e.s.p.s.w.) sys-

tem of differential equations, defined as

(6.6) P0[(Pk+1)ξP0 − Pk+1(P0)ξ + (Pk)ηP0]

= Pk[(P1)ξP0 − P1(P0)ξ + (P0)ηP0], for k ≥ 1.

Proof: It is straightforward to see that the analyticity of e1, e2, . . . eN and P0 is

equivalent to the analyticity of P0, P1, . . . , PN and P0 dividing each Pj within O(Ω).
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Completion of this proof results from the following basic calculation.

(

P1

P0

)

ξ

Pk

P0

−

(

Pk+1

P0

)

ξ

−

(

Pk

P0

)

η

=
((P1)ξP0 − P1(P0)ξ)Pk − ((Pk+1)ξP0 − Pk+1(P0)ξ)P0 − ((Pk)ηP0 − Pk(P0)η)P0

P 3
0

=
Pk[(P1)ξP0 − P1(P0)ξ + (P0)ηP0] − P0[(Pk+1)ξP0 − Pk+1(P0)ξ + (Pk)ηP0]

P 3
0

�

Now assume P0, P1, . . . , PN satisfy (6.6), not necessarily being derived from a set

of e1, e2, . . . , eN as in the previous lemma. We use [P0 : P1 : · · · : PN ] to denote the

equivalence class from the relation (P0, P1, . . . , PN) ∼ (λP0, λP1, . . . , λPN), for λ a

meromorphic function not equivalently zero. If P0, P1, . . . , PN satisfy the h.e.s.p.s.w.

equations, then a basic calculation using (6.6) shows that λP0, λP1, . . . , λPN also

satisfy the h.e.s.p.s.w. equations. So it is a well-defined notion to say that [P0 : P1 :

· · · : PN ] satisfies the h.e.s.p.s.w. equations. While a [P0 : P1 : · · · : PN ] satisfying

the h.e.s.p.s.w. equations has several representations, it is clear that we can choose

P0, P1, . . . , PN to be analytic. There are more specific classes of representations,

which we now demonstrate.

Lemma VI.5. Let Q0, Q1, . . . , QN be analytic functions on some domain Ω, with

Q0 not identically zero, that satisfy the h.e.s.p.s.w. equations. Then there exists

P0, P1, . . . , PN analytic on Ω such that [Q0 : Q1 : · · · : QN ] = [P0 : P1 : · · · : PN ],

(P0)ξ = 0, and P0 divides ((P1)ξ + (P0)η).

Proof: This argument primarily uses the algebraic property of the unique factor-

ization property of O(Ω). Let [P0 : P1 : · · · : PN ] be a lowest terms representation

of [Q0 : Q1 : · · · : QN ] and assume for sake of contradiction that no lowest terms
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representation exists with (P0)ξ = 0. Then there exists an irreducible r that divides

P0 and (ur)ξ 6≡ 0 for all invertible u. Let n > 0 be the maximum number such that

rn|P0. Since [P0 : P1 : · · · : PN ] is a lowest terms representation, there exists a k ≥ 1

such that r 6 |Pk. Let k be the smallest such that this is true. Now observe

(6.7) P0[(Pk+1)ξP0 − Pk+1(P0)ξ + (Pk)ηP0] = Pk[(P1)ξP0 − P1(P0)ξ + (P0)ηP0]

and that r2n−1 divides the left hand side and thus r2n−1 divides α := P0(P1)ξ −

(P0)ξP1 + P0(P0)η. Next note

(6.8) Pk−1α = (Pk)ξP
2
0 − Pk(P0)ξP0 + (Pk−1)ηP

2
0

(by the h.e.s.p.s.w if k > 1, and tautologically if k = 1). r2n divides the left-hand side

and the first and third terms on the right-hand side, so r2n|Pk(P0)ξP0. This implies

that rn|(P0)ξ. By applying the product rule to a factorization of P0, we see that r|rξ.

This in turn implies r is the product of an invertible element and an element that is

constant with respect to ξ (rξ = kr =⇒ r = A(η) exp(
∫

k dξ)). This achieves the

desired contradiction.

So let [P0 : P1 : · · · : PN ] be a lowest terms representation of [Q0 : Q1 : · · · : QN ]

such that (P0)ξ = 0. By the h.e.s.p.s.w. equations this implies

(6.9) P0[(Pk+1)ξ + (Pk)η] = Pk[(P1)ξ + (P0)η], for 1 ≤ k ≤ N, (with PN+1 := 0).

Now let r be any irreducible factor that divides P0 with multiplicity m > 0. By the

lowest-term representation, there exists a k ≥ 1 such that r 6 |Pk. Thus by (6.9),

rm|((P1)ξ + (P0)η). As this holds for all factors of P0, it follows that P0 divides

(P1)ξ + (P0)η.

�
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Let P0, P1, . . . , PN be analytic functions such that P0 doesn’t identically vanish.

We call P0, P1, . . . , PN a refined representative of [P0 : P1 : · · · : PN ], if it satisfies

(6.9) and (P0)ξ = 0. We call the combination of (6.9) and (P0)ξ = 0, the r.h.e.s.p.s.w.

system of differential equations.

We call P0, P1, . . . , PN a special representative of [P0 : P1 : · · · : PN ], if it satisfies

the statement of Lemma VI.5. We say that P0, P1, . . . , PN satisfy the s.h.e.s.p.s.w.

system of equations on Ω if they satisfy one of the following equivalent conditions.

1. Equation (6.9) and (P0)ξ = 0 hold and P0, P1, . . . , PN have no common irre-

ducible factors in O(Ω).

2. Equation (6.9), (P0)ξ = 0, and P0|((P1)ξ + (P0)η) all hold.

3. There exists an analytic function µ such that

(6.10) (Pk+1)ξ + (Pk)η = µPk, for 0 ≤ k ≤ N, (with PN+1 := 0),

and (P0)ξ = 0.

4. There exists an analytic function µ such that

(6.11) (Pk+1)ξ + (Pk)η = µPk, for − 1 ≤ k ≤ N, (with P−1 := 0, PN+1 := 0)

Proof of Equivalence: The proof of Lemma VI.5 immediately gives that 1 =⇒

2. If we assume 2, then the proof of Lemma VI.5 and the previous implication

give that there exist analytic functions R0, R1, . . . , RN which satisfy 1, 2, and that

[P0 : P1 : · · · : PN ] = [R0 : R1 : · · · : RN ]. (Note that it was assumed that P0 was not

equivalently zero, thus this holds for R0 as well.) As R0, R1, . . . , RN have no common

irreducible factors in O(Ω), there exists a λ ∈ O(Ω) such that Pi = λRi, for all i.

By noting (R0)ξ = 0 and (P0)ξ = 0 it holds that λξ = 0. Next R0|((R1)ξ + (R0)η)
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and P0|((P1)ξ + (P0)η) implies λ|λη. Together λξ = 0 and λ|λη imply that λ is non-

vanishing and thus a unit in O(Ω). Thus P0, P1, . . . , PN has no common irreducible

factors and 1 holds.

Assuming 2, let µ =
(P1)ξ+(P0)η

P0
, which is an analytic function. Then note (6.10)

holds for k = 0 tautologically, and it holds for other k by dividing equation (6.9)

through by P0. So 3 holds.

Assuming 3, note by (6.10) for k = 0 that (P1)ξ + (P0)η = µP0. This implies that

P0|((P1)ξ + (P0)η) and (6.9) by cross-multiplication of this equation with (6.10) for

k ≥ 1. So 2 holds.

3 and 4 are equivalent by recognizing that (P0)ξ = 0 is equivalent to (6.11) for

k = −1 considering P−1 = 0.

�

If P0, P1, . . . , PN is a special representative, then the other special representatives

are of the form [λP0 : λP1 : · · · : λPN ] where λξ = 0 and λ is invertible (i.e. non-

vanishing on Ω).

Now an easy calculation shows that if [P0 : P1 : · · · : PN ] satisfy the s.h.e.s.p.s.w.

equations for a particular µ, then for λ non-vanishing on Ω with λξ = 0, it holds

that [P̂0 : P̂1 : · · · : P̂N ], with P̂k = λPk, satisfies the s.h.e.s.p.s.w. equations with

µ̂ = µ+ λη

λ
. So µξ remains invariant while µ|ξ=ξ∗ does not. (In fact µξ =

(

P1

P0

)

ξξ
.)

If we can define λ = exp(−
∫ η

η∗ µ(ξ, η′)|ξ=ξ∗ dη
′), then µ̂|ξ=ξ∗ = 0. But to generally

define λ as such requires some properties on Ω. λ will be well-defined, if (ξ0, η0) ∈ Ω

implies that {η | (ξ0, η) ∈ Ω} is connected, is simply-connected, and contains η∗.

For instance we could assume that Ω is a polydisc (with respect to the coordinate

directions) or that it is a complete Reinhardt domain centered at (ξ∗, η∗). Either of
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these would be appropriately suited. As our interest truly lies locally, the choice of

type of neighborhood is less material. We use polydiscs in our treatment.

If P0, P1, . . . , PN satisfy the s.h.e.s.p.s.w. equations with µ such that µξ=ξ∗ = 0,

then we say that it is a canonical representative of [P0 : P1 : · · · : PN ] and that it

satisfies the c.h.e.s.p.s.w. equations. Note two canonical representatives of [P0 : P1 :

· · · : PN ] will differ only by a scalar (complex) multiple.

In conclusion we derive the following theorem.

Theorem VI.6. For γ a closed, oriented, C2 real 1-chain in C2 ⊂ CP2, the following

are equivalent:

(i) γ bounds a holomorphic 1-chain within CP2

(iv) ∃ (ξ∗, η∗) with some neighborhood Ω such that ∃ non-negative integers N+ and

N− and functions P+
k (ξ, η) for 0 ≤ k ≤ N+ and P−

k (ξ, η) for 0 ≤ k ≤ N−, with

P±
0 6≡ 0, that are defined on Ω, analytic in (ξ, η), and satisfy the s.h.e.s.p.s.w.

system of differential equations, (Pk+1)ξ + (Pk)η = µPk, ∀k ≥ 0, (P0)ξ = 0, for

some analytic function µ, (µ = µ± and P = P±
k ) (treating P±

N±+1 = 0), such

that on Ω,

(6.12)
∂2

∂ξ2
Gγ(ξ, η) =

∂2

∂ξ2

(

P+
1 (ξ, η)

P+
0 (ξ, η)

−
P−

1 (ξ, η)

P−
0 (ξ, η)

)

(iv’) Any (ξ∗, η∗) with any connected neighborhood Ω ⊆ Uγ satisfies (iv).

(iv”) Any (ξ∗, η∗) with any polydisc neighborhood (with respect to the coordinates

(ξ, η)) Ω ⊆ Uγ satisfies (iv) with the additional restriction that µ(ξ, η)|ξ=ξ∗ is

identically zero as a function in η.

Before giving the proof of this theorem we establish the following lemma, another

analog of Lemma IV.2.
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Lemma VI.7. Let V be a holomorphic 1-chain bounded by γ containing no compo-

nents in the line at infinity, {w0 = 0}. For Ω any component of Uγ, there exist non-

negative integers N+ and N− and functions P+
0 , P

+
1 , . . . , P

+
N+ and P−

0 , P
−
1 , . . . , P

−
N−

that are well-defined, analytic in (ξ, η), and satisfy the s.h.e.s.p.s.w. equations on Ω,

for which (6.12) holds.

Proof (of Lemma): Let’s assume that V is a positive holomorphic 1-chain. If we

establish the lemma in this case with N− = 0, then the lemma holds in general as

any holomorphic 1-chain is the difference of two positive holomorphic 1-chains.

Let E = {(ξ, η) | V has a component contained in the line {w2 = ξw0 + ηw1}}.

Note that this set is finite. Choose a point (ξ∗, η∗) ∈ Ω ∩ IV \E. Define q = (0 :

1 : η∗) and note that q is in the intersection of V and {w0 = 0}. Let m denote the

multiplicity of intersection between V and {w0 = 0} at q.

Note w2−ξ∗w0−η∗w1

w1
and w0

w1
serve as natural holomorphic coordinates near q. We’ll

use x to denote w2−ξ∗w0−η∗w1

w1
and y to denote w0

w1
. Let U be a polydisc in the holomor-

phic coordinates x and y. Specifically let U be {|x| < δ, |y| < ǫ} for an appropriate

choice of δ and ǫ to be given. Choose ǫ so that V does not intersect {x = 0, |y| = ǫ}

(which can be done since (ξ∗, η∗) is outside E). Choose δ small enough such that V

does not intersect {|x| ≤ δ, |y| = ǫ} and so that V only intersects y = 0 inside U at

q. Also make sure δ and ǫ are chosen small enough that V can be defined in U as

the divisor of a function F holomorphic in x and y on U . It should be noted that F

is divisible by neither x nor y.

Define Ω0 = Ω ∩ {(ξ, η) | ǫ|ξ − ξ∗| + |η − η∗| < δ}, shrinking δ if necessary

to ensure that Ω0 is connected. For (ξ, η) in Ω0 the line {w2 = ξw0 + ηw1} (or

{x = (ξ − ξ∗)y + (η − η∗)}) only intersects ∂U at {|x| < δ, |y| = ǫ}. Let Hξ,η(y) =
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F ((ξ−ξ∗)y+(η−η∗), y) and note it is non-vanishing on |y| = ǫ for (ξ, η) ∈ Ω0. Thus

(6.13)
1

2πi

∫

|y|=ǫ

H ′
ξ,η(y)

Hξ,η(y)
dy

is well-defined, integer-valued, and analytic with respect to (ξ, η) in Ω0. Hence the

degree of intersection between V and the line {w2 = ξw0 + ηw1} inside U is constant

for (ξ, η) in Ω0.

Then we can define the following functions analytically on Ω0. Let e0,k(ξ, η) be

the kth elementary symmetric function of the z1 coordinates of the intersections

(counting multiplicity) between V and {w2 = ξw0 + ηw1} inside U . Now our aim is

prove the following estimate on Ω0\IV .

(6.14) e0,k(ξ, η) ≤
C

|η − η∗|m
, for all k, for some constant C

We’ll also demonstrate that there is always a k for which this estimate is sharp, in

that there is always a k for m cannot be replaced with something strictly smaller.

Now define c0,k(ξ, η) to be the sum of kth powers of the z1 (or 1/y) coordinates

of intersection inside U between V and {w2 = ξw0 + ηw1}. The following equality

arises from basic residue calculations.

(6.15) c0,k(ξ, η) =
1

2πi

∫

|y|=ǫ

1

yk

H ′
ξ,η(y)

Hξ,η(y)
dy −

1

(k − 1)!

dk−1

dyk−1

(

H ′
ξ,η(y)

Hξ,η(y)

)∣

∣

∣

∣

y=0

For simplicity we’ll define

(6.16) Sk =
1

2πi

∫

|y|=ǫ

1

yk

H ′
ξ,η(y)

Hξ,η(y)
dy

Note that the Sk are bounded functions in ξ and η.

Elementary symmetric functions can be given in terms of sums of powers, so we

can relate e0,k in terms of c0,k. This is most easily calculated through generating
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functions. Let E(t) =
∑∞

k=0 e0,kt
k and C(t) =

∑∞
k=1 c0,kt

k−1. Now using (6.15) we

get that

(6.17) C(t) =
∞
∑

k=1

Skt
k−1 −

∞
∑

k=1

1

(k − 1)!

∂k−1

∂yk−1

(

H ′
ξ,η(y)

Hξ,η(y)

)∣

∣

∣

∣

y=0

tk−1

=
∞
∑

k=1

Skt
k−1 −

H ′
ξ,η(t)

Hξ,η(t)

It’s a result of symmetric function theory that C(−t) = E′(t)
E(t)

. (For instance see [20].)

Thus E(t) = exp
(

∫ t

0
C(−τ) dτ

)

. Using (6.17) we get

(6.18) E(t) = exp

(

∞
∑

k=1

−Sk

k
(−t)k

)

Hξ,η(−t)

Hξ,η(0)

= exp

(

∞
∑

k=1

−Sk

k
(−t)k

)

∞
∑

k=0

(−1)k

k!

H
(k)
ξ,η (0)

Hξ,η(0)
tk

Examining the above, we can see that e0,k is a linear combination of
H

(j)
ξ,η

(0)

Hξ,η(0)
for

j ≤ k with coefficients being expressions in terms of the Sk. By calculating the

multiplicity of intersection between y = 0 and F (x, y) = 0 at q, we obtain that

F (x, 0) has order m in x. This implies that Hξ,η(0) (which equals F (η − η∗, 0)) can

be bounded below by a constant multiple of (η − η∗)m. Since H
(j)
ξ,η(0) is a bounded

function in ξ and η this yields the desired estimate (6.14).

Choose the smallest k such that H
(k)
ξ,η (0) doesn’t vanish at η = η∗. (This is

equivalent to the smallest k such that ∂k

∂ykF (x, y)
∣

∣

∣

(x,y)=(0,0)
6= 0. There must be such

a k as F is not divisible by x.) Then
H

(j)
ξ,η

(0)

Hξ,η(0)
is comparable to 1

|η−η∗|m
when j equals

k and for no lesser value of j. Thus |e0,k| will be comparable to 1
|η−η∗|m

, and so we

see there will always exist a k for which (6.14) is sharp.

Now let {qs} represent all the points of intersection between V and {w0 = 0},

given with multiplicity of intersection ms. Let

(6.19) P+
0 (ξ, η) =

∏

s|qs 6=(0:0:1)

(η − (z2/z1)|qs
)ms
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By Lemma VI.3 we have N+ determined and, for 1 ≤ k ≤ N+, e+k (ξ, η) defined on

Ω\IV which are analytic and satisfy the e.s.p.s.w. equations as well as satisfying

(6.4). By Lemma VI.4 we have that P+
k = P+

0 e
+
k satisfy the h.e.s.p.s.w. equations.

We also see that (6.12) holds on this domain. Using (6.14) we can see the P+
k are

locally bounded near Ω ∩ IV and so by Lemma 3 of [27] we have that the functions

P+
k analytically extend to Ω and so satisfy the h.e.s.p.s.w. equations and (6.12) on

Ω. The sharpness of the estimate (6.14) in fact implies that [P+
0 : P+

1 : · · · : P+
N+ ] is

in fact in lowest terms. This and the fact that (P+
0 )ξ ≡ 0 implies through the proof

of Lemma VI.5 the P+
k satisfy the s.h.e.s.p.s.w. equations.

�

Proof (of Theorem): First we point out the trivial implications, (iv”) =⇒ (iv).

Also by the argument immediately preceding the statement of the theorem on the

freedom of choice for µ we see that (iv’) =⇒ (iv”). By Lemma VI.7 we have that

(i) =⇒ (iv’). So it only remains to show that (iv) =⇒ (i). By Theorem VI.2 it

suffices to show that (iv) =⇒ (iii).

Let (ξ∗, η∗), N+, N−, P+
0 , . . . , P

+
N+, P−

0 , . . . , P
−
N−, and µ be chosen according

to satisfying (iv). Note since P+
0 and P−

0 are not identically zero, we can shrink

the neighborhood and choose a different (ξ∗, η∗), if necessary, such that P±
0 are

non-vanishing over the given neighborhood. Now define e±k =
P±

k

P±
0

, which are well-

defined and analytic in the given neighborhood of (ξ∗, η∗). Note (where ek = e±k and

Pk = P±
k ) that
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(6.20) (ek+1)ξ + (ek)η =
[(Pk+1)ξ + (Pk)η]P0 − Pk(P0)η

P 2
0

=
(µP0 − (P0)η)Pk

P 2
0

=
(P1)ξ

P0

Pk

P0
= (e1)ξek.

Then noting (6.12) implies (6.4), we see that (iii) is satisfied.

�

As Theorem VI.2 and Theorem VI.6 are analogs of Theorem IV.1, we may also

produce analogs of Theorem IV.6. To do so will require construction of the appro-

priate algebraic objects.

Define HCγ,η∗ to be the affine subspace of HCγ containing holomorphic 1-chains

bounded by γ that do not intersect {w2 = η∗w1} at the line at infinity, or equivalently,

those that don’t intersect the point [0 : 1 : η∗]. Note HCγ,(ξ∗,η∗) ⊂ HCγ,η∗ ⊂ HCγ .

Accordingly we wish to define spaces for the broader types of decompositions we’ve

previously discussed to extend SW(ξ,η∗),γ. Also we wish to extend the isomorphism

ϕ to an isomorphism on these extended spaces. Before plunging into the remaining

algebraic construction, which are quite technical, we give the following diagram to

illustrate our objective.

(6.21)

HCγ,(ξ∗,η∗)
⊂

−−−→ HCγ,η∗

⊂
−−−→ HCγ

∼=





y

ϕ ∼=





y
ϕE ∼=





y
Φ

SW(ξ∗,η∗),Gγ

⊂
−−−→ ESPSW(ξ∗,η∗),Gγ

⊂
−−−→ HESPSW(ξ∗,η∗),Gγ





y
∩





y
∩





y
∩

SW(ξ∗,η∗)
⊂

−−−→ ESPSW(ξ∗,η∗)
⊂

−−−→ HESPSW(ξ∗,η∗)

Recall O(ξ∗,η∗) is the ring of germs of analytic function about (ξ∗, η∗). Define

M(ξ∗,η∗) = ff(O(ξ∗,η∗)) as the field of germs of meromorphic functions about (ξ∗, η∗).
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Define FS(ξ∗,η∗) (for the curious, FS stands for finite sequence) to be the monoid

(semigroup with identity) O(ξ∗,η∗)[ζ ]\{0} with the monoid operation being polyno-

mial multiplication, which we denote by ◦. An element P (ζ) of FS(ξ∗,η∗) should be

perceived as a finite sequence of germs (starting with the coefficient of the lead-

ing term, which we call P0 to denote its precedence in the sequence). The ra-

tios with each germ in the sequence with the non-vanishing leading term serve as

elementary symmetric polynomials of some objects λ1, λ2, . . . , λN , by considering

P (ζ) = P0

∏N
j=1(ζ + λj). So an element of FS(ξ∗,η∗) corresponds to a formal finite

sum of these objects. From this point of view, the monoid operation of polynomial

multiplication is essentially addition amongst nonnegative formal linear combinations

of these objects, and so ◦ serves as our “linear” structure. (Note: This structure pro-

vides addition, not subtraction.)

In general we may think of the objects λ1, λ2, . . . , λN as multi-valued meromorphic

germs about (ξ∗, η∗). (For our definition of multi-valued meromorphic germs in

dimension 1, which we also refer to as Laurent-Puiseux germs, see the introduction

to Appendix A.) If P (ζ) is a monic polynomial, then these objects are multi-valued

holomorphic germs. If P (ζ) factors into linear factors, then these objects are single-

valued meromorphic germs. (Of course if both these properties hold for P (ζ), then

these objects are single-valued holomorphic germs.)

Now define the submonoid RHESPSW+
(ξ∗,η∗) to be all elements P0ζ

N + P1ζ
N−1 +

· · · + PN of FS(ξ∗,η∗) such that P0, P1, . . . , PN satisfy (6.9) and (P0)ξ = 0. (This is

equivalent to P0, P1, . . . , PN satisfying the r.h.e.s.p.s.w. system of differential equa-

tions.) The identity 1 clearly is an element, so to verify that this is a submonoid

let’s examine the sum (by ◦) of two general elements. Let P =
∑M

i=0 Piζ
M−i and

Q =
∑N

i=0Qiζ
N−i be two elements of RHESPSW+

(ξ∗,η∗) and let R = P ◦ Q. So



51

R =
∑M+N

i=0 Riζ
M+N−i, where Ri =

∑i
j=0 PjQi−j. R can be seen to be an element of

RHESPSW+
(ξ∗,η∗) by the following calculation.

(6.22) R0 [(Rk+1)ξ + (Rk)η]

= P0Q0

[

k+1
∑

j=1

(Pj)ξQk+1−j +

k
∑

j=0

Pj(Qk+1−j)ξ +

k
∑

j=0

(Pj)ηQk−j +

k
∑

j=0

Pj(Qk−j)η

]

=

k
∑

j=0

P0 [(Pj+1)ξ + (Pj)η]Q0Qk−j +

k
∑

j=0

P0PjQ0 [(Qk−j+1)ξ + (Qk−j)η]

=

k
∑

j=0

Pj [(P1)ξ + (P0)η]Q0Qk−j +

k
∑

j=0

P0PjQk−j [(Q1)ξ + (Q0)η]

=

(

k
∑

j=0

PjQk−j

)

[(P1Q0 + P0Q1)ξ + (P0Q0)η]

= Rk [(R1)ξ + (R0)η]

Define ESPSW+
(ξ∗,η∗) to be the submonoid of monic polynomials in RHESPSW+

(ξ∗,η∗).

Define HESPSW+
(ξ∗,η∗) to be (RHESPSW+

(ξ∗,η∗))/ ∼, where we say P ∼ Q if Q = λP ,

for a nonzero λ in M(ξ∗,η∗) (or effectively Mη∗). Or equivalently define HESPSW+
(ξ∗,η∗)

as the quotient monoid RHESPSW+
(ξ∗,η∗)/(O(ξ∗,η∗)\{0}). Define SW+

(ξ∗,η∗) to be the

submonoid of SW(ξ∗,η∗) consisting of the nonnegative formal linear combinations

There is a natural inclusion of SW+
(ξ∗,η∗) into ESPSW+

(ξ∗,η∗) given by
∑

µjfj 7→

∏

(ζ + fj)
µj . Also because ESPSW+

(ξ∗,η∗) ∩ (O(ξ∗,η∗)\{0}) = {1}, there is a nat-

ural inclusion map of ESPSW+
(ξ∗,η∗) into HESPSW+

(ξ∗,η∗) through RHESPSW+
(ξ∗,η∗).

Therefore SW+
(ξ∗,η∗) ⊂ ESPSW+

(ξ∗,η∗) ⊂ HESPSW+
(ξ∗,η∗).

Here is one way of understanding these objects, building on the previously de-

scribed intuition concerning FS(ξ∗,η∗). SW+
( ξ

∗, η∗) is already well understood as a

formal finite sum (meaning no negatively counted terms) of holomorphic germs that

satisfy the shockwave equation. An element of ESPSW+
(ξ∗,η∗) can be thought of as a
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formal finite sum of multi-valued holomorphic germs that locally satisfy the shock-

wave equation. And an element of HESPSW+
(ξ∗,η∗) may be perceived as a formal finite

sum of multi-valued meromorphic germs that locally satisfy the shockwave equation.

The next step is to derive formal linear combinations from formal finite sums.

For a general commutative monoid M with the cancellation property, one can

construct the group of fractions of M , which we’ll denote as K(M) (the K-functor

as referenced in K-theory). (K(M) can also be called the group of differences of M ,

which in fact bodes better with our thinking of ◦.) The elements of K(M) may be

represented as p/q, where p and q are elements of M . We identify the elements p/q

and (λp)/(λq) as being equal for any λ inM . (A notation suggesting this as the group

of differences, we could represent the elements as p− q identifying (λ+ p)− (λ+ q).)

Now define ESPSW(ξ∗,η∗) to be the group of fractions(differences) of ESPSW+
(ξ∗,η∗)

and HESPSW(ξ∗,η∗) to be the group of fractions(differences) of HESPSW+
(ξ∗,η∗), so

that both now have a true group operation (which we consider as our Z-linear struc-

ture) which was derived from the original monoid operation. Also note that SW(ξ∗,η∗)

is equivalent to the group of fractions(differences) of SW+
(ξ∗,η∗). Applying the func-

tor K preserves these inclusions, and we have SW(ξ∗,η∗) ⊂ ESPSW(ξ∗,η∗), where

∑

f+
j −

∑

f−
j becomes identified as

∏

(ζ + f+
j )/(

∏

(ζ + f−
j )) and ESPSW(ξ∗,η∗) ⊂

SHESPSW(ξ∗,η∗), where P/Q becomes represented as [P ]/[Q].

Now recall SW(ξ∗,η∗) has a natural homomorphism into O(ξ∗,η∗), simply given by

evaluating the element
∑

f+
j −

∑

f−
j non-formally within O(ξ∗,η∗). This homomor-

phism can be factored through the inclusion of SW(ξ∗,η∗) into ESPSW(ξ∗,η∗). For P/Q

in ESPSW(ξ∗,η∗), the corresponding homomorphism is given as P/Q 7→ P1 −Q1. For

HESPSW(ξ∗,η∗) the natural homomorphism must instead be given into M(ξ∗,η∗) and

is defined by [P ]/[Q] 7→ P1

P0
− Q1

Q0
.
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For G ∈ O(ξ∗,η∗), SW(ξ∗,η∗) is the inverse image under this homomorphism of

the functions agreeing with G in the second ξ derivative. Summarily we make the

analogous definitions for ESPSW(ξ∗,η∗),G and HESPSW(ξ∗,η∗),G. As a result we have

the inclusion SW(ξ∗,η∗),G ⊂ ESPSW(ξ∗,η∗),G ⊂ HESPSW(ξ∗,η∗),G.

We define ϕE as the homomorphism from HCγ,η∗ to ESPSW(ξ∗,η∗),Gγ
given by the

procedure of Lemma VI.3. And similarly we define Φ as the homomorphism from

HCγ to HESPSW(ξ∗,η∗),Gγ
given by the procedure of Lemma VI.7.

In fact these two homomorphisms are isomorphism. We state this in the final two

theorems of this section.

Theorem VI.8. The affine spaces HCγ,η∗ and ESPSW(ξ∗,η∗),Gγ
are isomorphic via

the map ϕE.

Proof: For a generic choice of ξ close to ξ∗, elements of HCγ,η∗ may be viewed as

elements of HCγ,(ξ,η∗) and elements of ESPSW(ξ∗,η∗),Gγ
may be viewed as elements of

SW(ξ,η∗),Gγ
. In fact elements of HCγ,η∗ and ESPSW(ξ∗,η∗),Gγ

may be uniquely defined

by these elements of “perturbate base”. The homomorphism ϕE corresponds to ϕ

under this type of perturbation operation, so it suffices to note Theorem IV.6.

�

Theorem VI.9. The affine spaces HCγ and HESPSW(ξ∗,η∗),Gγ
are isomorphic via

the map Φ.

Proof: (What follows is a word-processor proof, bearing the same argument struc-

ture as the proof of the previous theorem.) For a generic choice of η close to η∗, el-

ements of HCγ may be viewed as elements of HCγ,η and elements of HESPSW(ξ∗,η∗),Gγ

may be viewed as elements of ESPSW(ξ∗,η),Gγ
. Elements of HCγ and HESPSW(ξ∗,η∗),Gγ
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may be uniquely defined by these elements of “perturbate base”. The homomorphism

Φ corresponds to ϕE under this type of perturbation operation, so it suffices to note

Theorem VI.8.

�



CHAPTER VII

Behavior of Holomorphic 1-Chains near the Perspective

Line, as Encoded by Φ

A general theme of the previous sections is that certain classes of holomorphic 1-

chains bounded by γ within CP2 have an isomorphic correspondence to certain classes

of local formal “decompositions” of Gγ. At its heart, this isomorphic correspondence

transforms the behavior, local to the chosen perspective line {w2 = ξ∗w0 + η∗w1}, of

a given holomorphic 1-chain into a formal linear “decomposition” of Gγ locally about

(ξ∗, η∗). The first encounter with this theme was the appearance of the isomorphism

ϕ of Theorem IV.6. This was an important forerunning result, but it possessed some

quirks which were noted in Chapter VI. For one, the class of holomorphic 1-chains

in the domain of ϕ was dependent on the choice of (ξ∗, η∗). Theorem VI.9 provided

the isomorphism Φ, an extension of ϕ not subject to the fore-mentioned quirks. In

particular its domain is HCγ, independent of (ξ∗, η∗). This sections constitutes a

study of the isomorphism Φ and the pursuant applications in an examination of

HCγ.

In a similar fashion to before, let γ be a closed, oriented, C2 real 1-chain in

C2 ⊂ CP2. For any fixed (ξ∗, η∗) ∈ Uγ, Φ gives a isomorphism from HCγ to

HESPSW(ξ∗,η∗),Gγ
.

First we define notions of degree on the elements of HCγ and HESPSW(ξ∗,η∗),Gγ

55
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and show that these notions are in fact preserved by Φ.

Let V be an element of HCγ. We may decompose V by its positive and negative

components, so that V = V + − V −, where V + and V − are positive holomorphic

1-chains having support contained in the support of V . Let W be an analytic variety

in CP2 (hence an algebraic variety) avoiding spt γ. Define the degree of positive

intersections of V with W to be the total intersection degree of V + and W . Likewise

define the degree of negative intersections of V with W to be the total intersection

degree of V − and W .

Let [P ]/[Q] be an element of HESPSW(ξ∗,η∗),G, where P and Q are members

of RHESPSW+
(ξ∗,η∗) which one may recall is a subring of a polynomial ring. The

representation of [P ]/[Q] is not unique, but choose a representation such that the

polynomial degree of P is minimal (the corresponding Q will automatically have

minimal polynomial degree). With P and Q so chosen, define the degree of positive

terms of [P ]/[Q] to be the polynomial degree of P and the degree of negative terms

of [P ]/[Q] to be the polynomial degree of Q.

With (ξ∗, η∗) fixed, we will use intersection with the perspective line, {w2 =

ξ∗w0 + η∗w1}, to determine degree on HCγ. By noting the proof of Lemma VI.7,

which provides the definition of Φ, it follows that Φ preserves degree.

Theorem VII.1. Let γ be a closed, oriented, C2 real 1-chain in C2 ⊂ CP2. Let V ∈

HCγ and (ξ∗, η∗) ∈ Uγ. The degree of positive (resp. negative) terms of Φ(V ) equals

the degree of positive (resp. negative) intersections of V with {w2 = ξ∗w0 + η∗w1}.

We also can derive results by noting how Φ encodes the structure of an analytic

variety near the perspective line. Theorem V.5 was one example of this. In that case

the required behavior near the selected perspective line included no intersections at

the line at ∞ and we were able to finesse the required behavior to include local
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transversality. As a result, it did not require the full generality of Theorem VI.9 and

was able to only use Theorem IV.6. Whenever the behavior we wish to impose does

not include the associated restrictions of Theorem IV.6 we might be able to use The-

orem IV.6 by employing some generic perturbations (as Theorem V.5 demonstrates).

However a simpler and more elegant approach would be to use the greater generality

of Theorem VI.9.

So we revisit the notion of bounding permitting only intersection with the per-

spective line at a given point with non-tangential contact. This was introduced in

Theorem V.5, but this time we examine it in light of Theorem VI.9. A preliminary

step towards this is the following.

Theorem VII.2. Let V ∈ HCγ and (ξ∗, η∗) ∈ Uγ. V avoids the point [0 : 1 : η∗] if

and only Φ(V ) may be represented by P+
0 , P

+
1 , . . . , P

+
N+ and P−

0 , P
−
1 , . . . , P

−
N− holo-

morphic in (ξ, η) on some neighborhood Ω of (ξ∗, η∗), and satisfying the s.h.e.s.p.s.w.

equations such that P±
0

∣

∣

η=η∗ 6= 0.

Proof: Recall that the P+
k (resp. P−

k ) give a homogenized form of the elementary

symmetric polynomials of the z1 coordinates of positive (resp. negative) intersections

of V with {w2 = ξw0 + ηw1}. So having P±
0 not vanish for η = η∗ implies these

elementary symmetric polynomials will be bounded. Thus for ξ near ξ∗, V does not

intersect {w2 = ξw0 +η∗w1} at the line of ∞, thereby implying V isn’t incident upon

[0 : 1 : η∗].

In reverse, from the construction of P0 from Lemma VI.7, in particular equation

(6.19), we see V avoiding the the point [0 : 1 : η] will mean that the constructed

representation will satisfy P±
0 |η=η∗ 6= 0.

�
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Now we revisit the issue bounding a holomorphic 1-chain having intersections

with the perspective line occurring only with non-tangential contact at a prescribed

point.

Theorem VII.3. Let V ∈ HCγ and (ξ∗, η∗) ∈ Uγ. V may only intersect {w2 =

ξ∗w0 + η∗w1} at (0, ξ∗) with non-tangential contact if and only Φ(V ) may be rep-

resented by P+
0 , P

+
1 , . . . , P

+
N+ and P−

0 , P
−
1 , . . . , P

−
N− holomorphic in (ξ, η) on some

neighborhood Ω of (ξ∗, η∗), and satisfying the s.h.e.s.p.s.w. equations, such that

P±
0

∣

∣

η=η∗ 6= 0 and ∂ℓ

∂ξℓP
±
k

∣

∣

∣

ξ=ξ∗
= 0, for ℓ < k.

Proof: With Theorem VII.2 we may assume that V is not incident upon the point

[0 : 1 : η∗], and that the s.h.e.s.p.s.w. representations of Φ(V ) may be given with

P±
0 |η=η∗ 6= 0. By shrinking Ω, if necessary, we may assume that P+

0 and P−
0 are

non-vanishing. Dividing through by P±
0 , we may assume that P±

0 ≡ 1.

Also it suffices to establish this theorem in the case of when V is positive. For we

decompose V by its positive and negative components to V = V + − V −, where V +

and V − are positive and don’t have common components. Applying the theorem to

V + and V − separately yields the theorem in general.

Now let fj(ξ, η) describe the z1 coordinates of the intersections of V with the line

{w2 = ξw0 + ηw1}. For (ξ, η) near (ξ∗, η∗), we must technically think of these as

being multi-valued holomorphic functions. Assigning appropriate multiplicities, we

can think of describing V near {w2 = ξ∗w0 +η∗w1} as
∑

j µjV(z1−fj(z2−η∗z1, η∗)).

Define x = z2 − η∗z1 − ξ∗ and y = z1. Then V can be perceived near {x = 0} as

∑

j µjV(y − fj(ξ
∗ + x, η∗)). (Note this relates the general arrangement examined in

Appendix A.)

Now define em(x) = Pm(ξ∗ + z, η∗) (recalling P0 ≡ 1), and define cm(x) =
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∑

j µjfj(ξ
∗+x, η∗)m. These are, respectively, the elementary symmetric polynomials

and sums of powers of the fj. Now we define their standard generating functions.

(7.1) Ex(t) =
∞
∑

m=0

em(x)tm

(7.2) Cx(t) =
∞
∑

m=0

cm+1(x)t
m

Recognize the combinatorial identity, Cx(t) = (Ex)
′(−t)/Ex(−t), and its counterpart

Ex(t) = exp(
∫ z

0
Cx(−τ) dτ).

The theorem will follow by the subsequent equivalences.

By Theorem A.4, V intersects {x = 0} (which is {w2 = ξ∗w0 + η∗w1}) at (x, y) =

(0, 0) (which is (z1, z2) = (0, ξ∗)) with non-tangential contact if and only if cm(x)

is divisible by xm for all m. This is equivalent to Cx(t) being representable as x

times a Taylor series in (xt) using coefficients holomorphic in x locally about x = 0,

which is then equivalent to Ex(t) being representable as a Taylor series in (xt) using

coefficients holomorphic in x locally about x = 0. This translates to be the same as

em(x) being divisible by xm and to ∂ℓ

∂ξℓPm

∣

∣

∣

ξ=ξ∗
= 0, for ℓ < m.

�

Consequentially we can give a result concerning boundaries of holomorphic 1-

chains within C × Ĉ. Let φ : Ĉ × Ĉ − − → CP2 be the birational map defined as

(z0 : z1) × (w0 : w1) 7→ (z0w1 : z1w0 : z0w0), or as (z, w) 7→ ( z
w
, 1

w
) on the natural

affine portions.

Theorem VII.4. For γ a closed, oriented, C2 real 1-chain in C × C∗ ⊂ C × Ĉ, the

following are equivalent:

1. γ bounds a holomorphic 1-chain within C × Ĉ
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2. φ∗γ bounds a holomorphic 1-chain within CP2 that may only intersect {w2 = 0}

at (0, 0) with non-tangential contact

3. ∃ some neighborhood Ω of (0, 0) such that ∃ non-negative integers N+ and N−

and functions P+
k (ξ, η) for 0 ≤ k ≤ N+ and P−

k (ξ, η) for 0 ≤ k ≤ N−, with

P±
0 |η=η∗ 6= 0 and ∂ℓ

∂ξℓP
±
k

∣

∣

∣

ξ=ξ∗
= 0 for 0 ≤ ℓ < k, that are defined on Ω, analytic

in (ξ, η), and satisfy the s.h.e.s.p.s.w. system of differential equations, (Pk+1)ξ +

(Pk)η = µPk, ∀k ≥ 0, (P0)ξ = 0, for some analytic function µ, (µ = µ± and

Pk = P±
k ) (treating P±

N±+1 = 0), such that on Ω,

(7.3)
∂2

∂ξ2

(

1

2πi

∫

γ

z

w

d(1 − ξw − ηz)

1 − ξw − ηz

)

=
∂2

∂ξ2

(

P+
1 (ξ, η)

P+
0 (ξ, η)

−
P−

1 (ξ, η)

P−
0 (ξ, η)

)

4. Any connected neighborhood Ω of (0, 0) satisfies condition 3

5. ∃ some neighborhood Ω of (0, 0) such that ∃ non-negative integers N+ and N−

and functions e+k (ξ, η) for 1 ≤ k ≤ N+ and e−k (ξ, η) for 1 ≤ k ≤ N−, with

∂ℓ

∂ξℓ e
±
k

∣

∣

∣

ξ=ξ∗
= 0 for 0 ≤ ℓ < k, that are defined on Ω, analytic in (ξ, η), and satisfy

the e.s.p.s.w. system of differential equations, (ek+1)ξ + (ek)η = (e1)ξek, ∀k ≥ 1,

(ek = e±k ) (treating e±N±+1 = 0), such that on Ω,

(7.4)
∂2

∂ξ2

(

1

2πi

∫

γ

z

w

d(1 − ξw − ηz)

1 − ξw − ηz

)

=
∂2

∂ξ2

(

e+1 (ξ, η) − e−1 (ξ, η)
)

Proof:

Condition 1 is equivalent to 2 by the discussion prior to Theorem V.5, notably

with φ = φ0. Conditions 2 and 3 are equivalent by Theorem VII.3 and a basic integral

calculation using the push-forward. By similar reasoning and using Lemma VI.7 we

see that 2 =⇒ 4. The implications 4 =⇒ 3 and 5 =⇒ 3 are trivial.
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To conclude we show that 3 =⇒ 5. Assume 3 and shrink the given Ω so that

P±
0 does not vanish on Ω. Setting e±k =

P±

k

P±
0

will then yield 3.

�

To conclude this section we give an extension of the normal characterization ques-

tion, which we term the characterization of boundaries of holomorphic chains with

qualifications. So choose (ξ∗, η∗) ∈ Uγ and some Q(ξ∗,η∗), a qualification or local prop-

erty for holomorphic 1-chains near the perspective line {w2 = ξ∗w0 + η∗w1}. One

question of interest is knowing when does γ bound a holomorphic 1-chain within

CP2 subject to the qualification Q(ξ∗,η∗). If we can determine a property P(ξ∗,η∗) on

elements of HESPSW(ξ∗,η∗),Gγ
such that V ∈ HCγ has qualification Q(ξ∗,η∗) if and

only if Φ(V ) has property P(ξ∗,η∗), then we may answer this question in a fashion

similar to Theorem VI.6.

Several of the results of this section center around correspondences between par-

ticular qualifications on holomorphic 1-chains and properties on their image under

Φ. We introduce the following theorem to serve as a general template in which any

of these results could be placed.

Theorem VII.5. Let γ be a closed, oriented, C2 real 1-chain in C2 ⊂ CP2. Let

(ξ∗, η∗) ∈ Uγ, and assume that V ∈ HCγ has qualification Q(ξ∗,η∗), depending only on

behavior local to {w2 = ξ∗w0 + η∗w1}, if and only if Φ(V ) has property P(ξ∗,η∗). The

following are equivalent:

1. γ bounds a holomorphic 1-chain within CP2 subject to qualification Q(ξ∗,η∗).

2. ∃ some neighborhood Ω of (ξ∗, η∗) in Uγ such that ∃ non-negative integers N+

and N− and functions P+
k (ξ, η) for 0 ≤ k ≤ N+ and P−

k (ξ, η) for 0 ≤ k ≤

N−, with P±
0 6≡ 0, that are defined on Ω, analytic in (ξ, η), and satisfy the
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s.h.e.s.p.s.w. system of differential equations, (Pk+1)ξ + (Pk)η = µPk, ∀k ≥ 0,

(P0)ξ = 0, for some analytic function µ, (µ = µ± and P = P±
k ) (treating

P±
N±+1 = 0), such that on Ω,

(7.5)
∂2

∂ξ2
Gγ(ξ, η) =

∂2

∂ξ2

(

P+
1 (ξ, η)

P+
0 (ξ, η)

−
P−

1 (ξ, η)

P−
0 (ξ, η)

)

,

and furthermore the s.h.e.s.p.s.w. decomposition of Gγ given by P+
0 , P

+
1 , . . . , P

+
N

and P−
0 , P

−
1 , . . . P

−
N satisfies property P(ξ∗,η∗).

3. ∃ some polydisc neighborhood (with respect to the coordinates (ξ, η)) Ω ⊆ Uγ of

(ξ∗, η∗) which satisfies condition 2 with the additional restriction that µ(ξ, η)|ξ=ξ∗

is identically zero as a function in η.



CHAPTER VIII

A Focus on the Case of N− = 0

Let µ be an analytic function in (ξ, η), defined in some polydisc (with respect

to the coordinate directions ξ and η) Ω that is a neighborhood of (ξ∗, η∗). Define

O(Ω) to be the ring of analytic functions on Ω. For N ≥ 0, define the statement

“µ satisfies condition (∗N)” to mean there exist P0, P1, . . . , PN ∈ O(Ω), with P0 6= 0

and defining PN+1 = 0 that satisfy

(8.1) (Pk+1)ξ = µPk − (Pk)η, for 0 ≤ k ≤ N , (P0)ξ = 0.

By the discussion preceding Theorem VI.6, we may arbitrarily modify µ|ξ=ξ∗ while

leaving µξ unchanged and preserving whether or not µ satisfies condition (∗N). The

main result of this section is Theorem VIII.7, which demonstrates a condition on µξ

equivalent to µ satisfying (∗N). Of further note this condition on µξ is equivalent

to a system of integro-differential equations on µξ. (Define the operator Dξ to be

differentiation with respect to ξ. Define the operator
∫

ξ
to be anti-differentiation with

respect to ξ with base point ξ∗ (i.e.
∫

ξ
f(ξ, η) =

∫ ξ

ξ∗
f(ξ′, η) dξ′). Do so similarly for η.

We call an equation an integro-differential equation on f if it can be expressed using

only f , scalars, basic arithmetic operations, and the previously given differential and

anti-differential operators.)

To motivate and direct this section, let’s consider the case when γ satisfies Theo-
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rem VII.1 with N− = 0 and N+ = N at (ξ∗, η∗). Note that

(8.2) (Gγ)ξξ =
P+

1

P+
0

=
(µ+P+

0 − (P+
0 )η)ξ

P+
0

= µ+
ξ ,

completely determines µ+
ξ and µ+ satisfies condition (∗N). So the issue of whether

or not γ bounds with N− = 0 and N+ = N is equivalent to whether or not any µ

such that µξ = (Gγ)ξξ satisfies condition (∗N). This explains why our interest will be

centered on µξ and why µ|ξ=ξ∗ will be considered extraneous in evaluating whether

µ satisfies (∗N).

Now we begin our technical development of this section. First we define U to be

the algebra of formal differential expressions on µξ. By this we specifically mean the

free Z-algebra with formal generators {Di
ηD

j
ξµ}i≥0,j≥1. (This algebra is constructed

as the formal Z-linear combinations of formal products of the given symbols.) For

a given µ with domain Ω there exists a natural homomorphism of U into the O(Ω),

which is given by mapping each formal symbol Di
ηD

j
ξµ to the analytic function

Di
ηD

j
ξµ determined from the specifically given µ. We’ll denote this (Z-algebra) ho-

momorphism by aµ, or refer to it as evaluation using µ. There are naturally defined

formal maps Dξ and Dη on U that agree with their namesakes under evaluation

using any µ. (In other words aµ ◦ Dξ = Dξ ◦ aµ.)

Define VK , for K ≥ 0, to be the free U-module generated by formal elements

{Dj
ξPi}0≤j≤i≤K . (The elements of VK are formal U-linear combinations of the sym-

bols {Dj
ξPi}0≤j≤i≤K .) Define V−1 to be the zero module. Given functions µ and

P0, P1, . . . , PK in O(Ω), there is a natural (Z-module) homomorphism from VK to

O(Ω), which is given by evaluating each formal symbol according to the given choice

of µ and P0, P1, . . . , PK . We’ll denote this homomorphism by bµ,P0,...,PK
or refer to it

as evaluation using µ and P0, P1, . . . , PK . (To help conceptualize this notation one

may consider bµ,P0,...,PK
(x) as meaning x|µ=µ,P0=P0,...,PK =PK

.)
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The rationale of introducing VK stems from the following lemma.

Lemma VIII.1. For ℓ > k ≥ 0, there exists a pk,ℓ ∈ Vk−1, such that for µ and

P0, P1, P2, . . . , Pk in O(Ω) that satisfy (8.1) with N = k − 1, then they must satisfy

Dℓ
ξPk = bµ,P0,...,Pk−1

(pk,ℓ).

Proof: We’ll first establish the lemma for the case ℓ = k + 1 by induction on k.

For k = 0, the statement is trivially true as (P0)ξ = 0. In case one wishes to see a

less trivial base case, one can establish k = 1 by noting via an easy manipulation

that (P1)ξξ = ∂
∂ξ

(µP0 − (P0)η) = µξP0.

We assume we have established it for all k up to and including k′, and now set

about to establish it for k = k′ + 1.

First we provide this ancillary fact. For m,n such that 0 ≤ m ≤ k−1 = k′, n ≥ 0,

Dn+1
ξ Pm+1 = Dn

ξ (µPm − (Pm)η)

=

n−1
∑

j=0

[(

n

j

)

(Dn−j
ξ µ)(Dj

ξPm)

]

+ (µ−Dη) (Dn
ξPm).

(8.3)

One consequence of this is that

Dk′+2
ξ Pk′+1 =

k′

∑

j=0

[(

k′ + 1

j

)

(Dk′+1−j
ξ µ)(Dj

ξPk′)

]

+ (µ−Dη) (Dk′+1
ξ Pk′).

Note that the summation term, when viewed a formal expression, is in Vk′, so our

only remaining concern is the rightmost term, which, by the inductive hypothesis,

may be represented as a Z-linear combination of terms of the form (µ−Dη)(rD
n
ξPm),

where r ∈ U and 0 ≤ n ≤ m ≤ k′ − 1. So it suffices to show a term of this form can

be represented as an expression from Vk′. Now note

(8.4) (µ−Dη)(rD
n
ξPm) = r(µ−Dη)(D

n
ξPm) − (Dηr)D

n
ξ Pm

= rDn+1
ξ Pm+1 −

n−1
∑

j=0

[((

n

j

)

r(Dn−j
ξ µ)

)

(Dj
ξPm)

]

− (Dηr)D
n
ξPm,
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where the second equality makes use of the previous ancillary fact. This prescribes

a formal expression in Vk′, and concludes the inductive step.

The lemma’s statement is now established when ℓ = k + 1. Now we define Dξ, a

self map of Vk which behaves asDξ under evaluation for any µ and P0, P1, . . . , Pk that

are subject to (8.1) with N = k − 1. (To be precise we mean that bµ,P0,...,Pk
◦ Dξ =

Dξ ◦ bµ,P0,...,Pk
.) As U has Dξ naturally defined, we only need be concerned with

defining Dξ on the module generators of Vk. For the symbols D
j
ξPi, where j < i

we choose the natural definition for Dξ. As the lemma has been established for

ℓ = k+1, for the remaining symbols we define Dξ(D
m
ξ Pm) = pm,m+1. Thus we have

completed the definition of Dξ on Vk. In conclusion the case ℓ > k + 1 follows by

letting pk,ℓ = Dξ
ℓ−k−1pk,k+1.

�

For the sake of the intuitive picture we simply provided an existential proof here.

But it is straightforward, though calculationally intensive, to use this proof to guide

in forming a constructive proof. As a result of this proof we can define ρk,ℓ,i,j in U

such that pk,ℓ can be given as

(8.5) pk,ℓ =
k−1
∑

i=0

i
∑

j=0

ρk,ℓ,i,j(D
j
ξPi).

Our definition for ρk,ℓ,i,j can be made well-defined for general choices of integers k,

ℓ, i, and j, with k, ℓ ≥ 0 such that

(8.6) (Dℓ
ξPk) =

∑

i

∑

j

ρk,ℓ,i,j(D
j
ξPi).

(At this point and following, we drop the notational distinction between elements of

Vk or U and the expressions they represent.)

A constructive proof for Lemma VIII.1 and the derivation of the definition for

ρk,ℓ,i,j is given in the appendix, along with some relations regarding ρk,ℓ,i,j. We will
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simply state here the definition derived there, though first we will make some com-

ments on notation. We routinely make use of the Kronecker delta function, which

is given as δp =



















1 if p = 0

0 if p 6= 0

, where p may be any integer. Also we permit empty

summations, which are precisely of the form
∑m−1

i=m and which we hold to equal

0. (However we will not use “reverse summations”, that is ones of the form
∑m−n

i=m ,

where n ≥ 2.) Also on occasion we might make use of extended binomial coefficients,

which define
(

n
m

)

to be 0 when m < 0 or m > n, given n ≥ 0. Several combinatorial

identities still hold with the extended definition. Since this is considered nonstan-

dard, we will make an explicit note of where we employ this extension of the binomial

coefficients. These notational choices will serve to unify a number of the following

equations and cases. Now the definition for ρk,ℓ,i,j, for k, ℓ ≥ 0 is as follows.

• For 0 ≤ ℓ ≤ k,

ρk,ℓ,i,j = δk−iδℓ−j.

• For 0 ≤ k < ℓ and any of j < 0, i < j, or i ≥ k,

ρk,ℓ,i,j = 0.

• For 0 ≤ j ≤ i < k < ℓ,

(8.7)

ρk,ℓ,i,j =

ℓ−2
∑

j1=k

(

ℓ− 1

j1

)

(Dℓ−1−j1
ξ µ)ρk−1,j1,i,j −

i
∑

j1=j+1

(

j1
j

)

(Dj1−j
ξ µ)ρk−1,ℓ−1,i,j1

− (Dηρk−1,ℓ−1,i,j) +

(

ℓ− 1

j

)

(Dℓ−1−j
ξ µ)δk−1−i + ρk−1,ℓ−1,i−1,j−1.

Remark: We provide this case breakdown as the way which ρk,ℓ,i,j may be well-

defined. But as one note we point out that (8.7) holds true whenever 0 ≤ k < ℓ.
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As noted near the end of the proof of Lemma VIII.1, we can provide a self-

map of VK which agrees with Dξ under the homomorphism bµ,P0,...,PK
when µ and

P0, P1, . . . PK are subject to (8.1) for N = K−1. An important ramification of this is

that if P0, P1, . . . , PN satisfy (8.1) with PN+1 = 0 then they satisfy a system of linear

ordinary differential equations with respect to ξ with µ given as fixed. Specifically

for 0 ≤ k ≤ N

(8.8) Dk+1
ξ Pk = pk,k+1 =

k−1
∑

i=0

i
∑

j=0

ρk,k+1,i,j(D
j
ξPi).

Also they satisfy

(8.9) 0 = pN+1,N+2 =
N
∑

i=0

i
∑

j=0

ρN+1,N+2,i,j(D
j
ξPi)

Now we wish to express (8.8) instead as a system of linear first-order ordinary differ-

ential equations with respect to ξ. By using vk,ℓ in place ofDℓ
ξPk, we have that for 0 ≤

ℓ < k, Dξvk,ℓ = vk,ℓ+1 and for 0 ≤ ℓ = k, Dξvk,k = pk,k+1 =
∑k−1

i=0

∑i
j=0 ρk,k+1,i,jvi,j.

This system of differential equations can be represented in matrix form. While

there are any number of ways to do this, we will provide one particularly strategic

way. To aid in the technical description, as well as the visual presentation, we make

a momentary digression to introduce the following definitions and notations. Let

I = {(i, j) | 0 ≤ j ≤ i} with the total ordering given by (i, j) � (i′, j′) if and only

if i < i′ or i = i′ and j ≥ j′. This ordering is the lexicographical ordering, with the

reverse ordering understood in the second entry. (By using subsets of this this index

set, the matrices we will later express will possess some triangularity characteristics.)

Let IN = {(i, j) | 0 ≤ j ≤ i ≤ N} ⊂ I, inheriting a total ordering structure from

I. If M is a matrix with rows indexed by A and columns indexed by B, we will use

the notation Mβ
α to refer to the entry in the row indexed by α ∈ A and the column

indexed by β ∈ B.
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Let

(8.10) ~vN =

[

v0,0 v1,1 v1,0 v2,2 · · · v2,0 · · · vN,N · · · vN,0

]T

,

where vi,j are assumed to be in O(Ω). This is a column vector indexed by IN , and

(~vN)(i,j) = vi,j. Define AN as the matrix (rows and columns both indexed by IN

given such that the previous system of differential equations on vi,j may be simply

given as Dξ~vN = AN~vN . This unambiguously defines AN , with entries in U. We see

that AN can be defined entry-wise by the following.

• For (0, 0) � (i, j), (i′, j′) � (N, 0) with i 6= j and (i′, j′) 6= (i, j + 1),

AN
(i′,j′)
(i,j) = 0.

• For (0, 0) � (i, j) � (N, 0) with i 6= j,

AN
(i,j+1)
(i,j) = 1.

• For (0, 0) � (i, i) � (i′, j′) � (N, 0),

AN
(i′,j′)
(i,i) = 0

• For (0, 0) � (i′, j′) ≺ (i, i) � (N, 0),

AN
(i′,j′)
(i,i) = ρi,i+1,i′,j′.

By understanding the general definition of ρk,ℓ,i,j (as given in Appendix B), AN could

be more concisely defined for all entries as AN
(i′,j′)
(i,j) = ρi,j+1,i′,j′.

Now it should be noted that AN is strictly lower triangular. This is also quite
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evident from the following visual presentation of AN .

(8.11) AN =















































































0

p1,2 0

0 1 0

p2,3 0

0 0 0 1 0

0 0 0 0 1 0

...
. . .

pN,N+1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 · · · 0 1 0

...
...

...
. . .

. . .
. . .

0 0 0 0 0 0 · · · 0 · · · 0 1 0















































































Now we also seek to express (8.9) in this language. This can be given by the

equation MN~vN = 0, where MN is an accordingly defined 1×IN matrix. In particular

MN is defined entry-wise as MN
(i,j) = ρN+1,N+2,i,j, and can be visually represented

as

(8.12) MN = [ pN+1,N+2 ] .

Next if P0, P1, . . . , PN satisfy (8.1) with PN+1 = 0, then the vi,j corresponding to

Dj
ξPi, 0 ≤ j ≤ i ≤ N , also satisfy a system of linear first-order ordinary differential

equations with respect to η. For 0 ≤ j ≤ i ≤ N ,

(8.13) Dη(D
j
ξPi) = Dj

ξ(µPi − (Pi+1)ξ)

=

j
∑

j′=0

[(

j

j′

)

(Dj−j′

ξ µ)(Dj′

ξ Pi)

]

−Dj+1
ξ Pi+1.
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So from the above equation (and noting PN+1 = 0) we can define a matrix BN such

that the above system of differential equations can be given as Dη~vN = BN~vN . We

can define BN entry-wise as follows.

• For (0, 0) � (i′, j′) ≺ (i, j) � (N, 0),

BN
(i′,j′)
(i,j) = 0.

• For (0, 0) � (i, j) � (i, j′) � (i, 0) � (N, 0),

BN
(i,j′)
(i,j) =

(

j
j′

)

(Dj−j′

ξ µ).

• For (0, 0) � (i, j) � (i, 0) ≺ (i′, j′) � (N, 0) with (i′, j′) 6= (i+ 1, j + 1),

BN
(i′,j′)
(i,j) = 0.

• For (0, 0) � (i, j) ≺ (i+ 1, j + 1) � (N, 0),

BN
(i+1,j+1)
(i,j) = −1.

For a more compact formulation of the entry-wise definitions we can define BN
(i′,j′)
(i,j) =

δi−i′
(

j
j′

)

Dj−j′

ξ µ− δi+1−i′δj+1−j′, where we understand the extended definition of bino-

mial coefficients given following Lemma VIII.1.

Note BN is upper triangular and has entries in U, with the exception of the
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diagonal, which has entries µ. BN is visually demonstrated below.

(8.14)

BN =

















































































µ −1 0 0 0 0 · · · 0 0 0 · · · 0

µ µξ −1 0 0

µ 0 −1 0

µ 2µξ µξξ 0 0 0 · · · 0

µ µξ 0 0 0 · · · 0

µ 0 0 0 · · · 0

. . .

µ Nµξ

(

N
2

)

µξξ · · · DN
ξ µ

µ
(

N−1
1

)

µξ · · · DN−1
ξ µ

µ · · · DN−2
ξ µ

. . .
...

µ

















































































The previous discussion proves the following theorem.

Theorem VIII.2. If P0, P1, . . . , PN satisfy (8.1) with PN+1 = 0 and vi,j = Dj
ξPi

then ~vN ∈ ker(Dξ −AN ) ∩ ker(Dη − BN) ∩ ker(MN ).

A stronger converse is also true.

Theorem VIII.3. Assume ~vN ∈ ker(Dξ −AN)∩ ker(Dη −BN ) and let Pi = vi,0 for

0 ≤ i ≤ N . P0, P1, . . . , PN satisfy (8.1) with PN+1 = 0.

Proof: From ~vN ∈ ker(Dξ − AN) we see that Dξv0,0 = 0 and that for 0 < i ≤

N , Dξvi,0 − vi,1 = 0. From ~vN ∈ ker(Dη − BN) we see that for 0 ≤ i < N ,

Dηvi,0 − µvi,0 + vi+1,1 = 0 and that DηvN,0 − µvN,0 = 0. These together show that
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the Pi as defined will satisfy (8.1) with PN+1 = 0.

�

The importance of ker(MN) is that Dξ −AN and Dη −BN will commute exactly

on kerMN . To show this we compute the commutator of Dξ − AN and Dη − BN .

Lemma VIII.4. Let ∆N be the IN indexed column vector that is entry-wise defined

as ∆N (i,j) = δi−Nδj−N . Then

(8.15) [Dξ −AN , Dη − BN ] = −∆NMN .

Proof: By basic operations note

(8.16) [Dξ − AN , Dη − BN ] = [Dξ, Dη] − [AN , Dη] − [Dξ, BN ] + [AN , BN ]

= (AN)η − (BN)ξ + ANBN − BNAN .

So now we focus on the entry-wise calculation of each of these terms, using the

more condensed entry-wise definitions to prevent the proliferation of cases. Namely

we will use that BN
(i′,j′)
(i,j) = δi−i′

(

j
j′

)

Dj−j′

ξ µ−δi+1−i′δj+1−j′ for general (i, j) and (i′, j′),

AN
(i′,j′)
(i,j) = δi−i′δj+1−j′, for 0 ≤ j < i and general (i′, j′), and AN

(i′,j′)
(i,i) = ρi,i+1,i′,j′,

for general i and (i′, j′). (We are using Kronecker delta and generalized binomial

coefficient notation.)

For general (i, j) and (i′, j′) note that

(8.17) (DξBN)
(i′,j′)
(i,j) = δi−i′

(

j

j′

)

(Dj−j′+1
ξ µ)

For the remaining terms, calculation is facilitated by breaking into cases. Now

we consider the case for (i, j) such that 0 ≤ j < i ≤ N and that (i′, j′) is general
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(i.e. 0 ≤ j′ ≤ i′ ≤ N). Then we point out the following calculations with this case

assumed.

(8.18) (DηAN )
(i′,j′)
(i,j) = 0

(8.19) (ANBN)
(i′,j′)
(i,j) =

N
∑

i1=0

i1
∑

j1=0

δi−i1δj+1−j1BN
(i′,j′)
(i1,j1)

= BN
(i′,j′)
(i,j+1)

= δi−i′

(

j + 1

j′

)

(Dj+1−j′

ξ µ) − δi+1−i′δj+2−j′

(8.20) (BNAN)
(i′,j′)
(i,j) =

N
∑

i1=0

i1
∑

j1=0

(

δi−i1

(

j

j1

)

(Dj−j1
ξ µ) − δi+1−i1δj+1−j1

)

AN
(i′,j′)
(i1,j1)

=

j
∑

j1=0

(

j

j1

)

(Dj−j1
ξ µ)AN

(i′,j′)
(i,j1)

−



















AN
(i′,j′)
(i+1,j+1) if i < N

0 if i = N

= δi−i′

(

j

j′ − 1

)

(Dj−j′+1
ξ µ) − δi+1−i′δj+2−j′

So the calculations of these terms in this particular case yields from that for 0 ≤ j <

i ≤ N and 0 ≤ j′ ≤ i′ ≤ N ,

(8.21) [Dξ −AN , Dη − BN ]
(i′,j′)
(i,j) = 0

Now we consider the remaining case, that is assuming that 0 ≤ j = i ≤ N and

0 ≤ j′ ≤ i′ ≤ N . We calculate the following assuming this case.

(8.22) (DηAN)
(i′,j′)
(i,i) = Dηρi,i+1,i′,j′
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(8.23) (ANBN)
(i′,j′)
(i,i) =

N
∑

i1=0

i1
∑

j1=0

AN
(i1,j1)
(i,i)

(

δi1−i′

(

j1
j′

)

(Dj1−j′

ξ µ) − δi1+1−i′δj1+1−j′

)

=
i′
∑

j1=0

ρi,i+1,i′,j1

(

j1
j′

)

(Dj1−j′

ξ µ) −



















ρi,i+1,i′−1,j′−1 if j′ > 0

0 if j′ = 0

=
i′
∑

j1=j′+1

ρi,i+1,i′,j1

(

j1
j′

)

(Dj1−j′

ξ µ) + ρi,i+1,i′,j′µ− ρi,i+1,i′−1,j′−1

(8.24) (BNAN)
(i′,j′)
(i,j)

=

N
∑

i1=0

i1−1
∑

j1=0

(

δi−i1

(

i

j1

)

(Di−j1
ξ µ) − δi+1−i1δi+1−j1

)

δi1−i′δj1+1−j′

+
N
∑

i1=0

(

δi−i1

(

i

i1

)

(Di−i1
ξ µ) − δi+1−i1δi+1−i1

)

ρi1,i1+1,i′,j′

= δi−i′

(

i

j′ − 1

)

(Di−j′+1
ξ µ) −



















δi+1−i′δi−j′+2 if j′ > 0

0 if j′ = 0

+ µρi,i+1,i′,j′ −



















ρi+1,i+2,i′,j′ if i < N

0 if i = N

= δi−i′

(

i

j′ − 1

)

(Di−j′+1
ξ µ) + µρi,i+1,i′,j′ − ρi+1,i+2,i′,j′ + δi−Nρi+1,i+2,i′,j′

The calculation of these terms then yields that for 0 ≤ j = i ≤ N and 0 ≤ j′ ≤ i′ ≤

N ,

(8.25) [Dξ − AN , Dη − BN ]
(i′,j′)
(i,i) = −δi−NρN+1,N+2,i′,j′

+ ρi+1,i+2,i′,j′ − ρi,i+1,i′−1,j′−1 − δi−i′

(

i+ 1

j′

)

(Di−j′+1
ξ µ)

+
i′
∑

j1=j′+1

(

j1
j′

)

(Dj1−j′

ξ µ)ρi,i+1,i′,j1 +Dηρi,i+1,i′,j′

= −δi−NMN
(i′,j′),
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where the last equality holds by the relation on ρk,ℓ,i,j given in (8.7).

As a result of both cases of calculations, the lemma holds.

�

Now we turn our attention onto the systems of linear differential equations rep-

resented by the operators Dξ −AN and Dη −BN . Define Ω̃ = {η ∈ C | (ξ∗, η) ∈ Ω},

which is a disc in C containing η∗. Define Ũ to be the free algebra generated formally

by {(Di
ηD

j
ξµ)|ξ=ξ∗}i≥0,j≥1, which has a natural homomorphism for a given µ into the

algebra of analytic functions on Ω̃. Now let

(8.26) ~wN =

[

w0,0 w1,1 w1,0 w2,2 · · · w2,0 · · · wN,N · · · wN,0

]T

,

where wi,j are in O(Ω̃).

The equation Dξ~vN = AN~vN gives a system of linear first order ordinary differ-

ential equations (with respect to ξ) that is analytically parameterized by η. Then

by the fundamental properties of linear first order ordinary differential equations,

for any given set of initial conditions at ξ = ξ∗ there exists an unique solution to

Dξ~vN = AN~vN , and furthermore the solution ~v linearly depends on the initial con-

ditions at ξ = ξ∗. This means there exists a unique matrix KN (dependent on µ)

such that ~vN = KN ~wN is the solution to Dξ~vN = AN~vN with initial conditions ~wN

at ξ = ξ∗. Note the entries of KN are analytic functions with domain Ω. Also by

the strict lower triangularity of AN , KN is lower triangular with 1’s on the diagonal.

Note (KN)ξ ~wN = Dξ(KN ~wN) = AN(KN ~wN) for all ~wN , so

(8.27) (KN)ξ = ANKN

And by restricting the equation ~vN = KN ~wN to ξ = ξ∗, we see that

(8.28) KN |ξ=ξ∗ = Id.
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So in fact we could choose to define KN by equations (8.27) and (8.28).

Note that KN is invertible and prescribes a particular change of coordinates on

(O(Ω))IN . This leads to the following theorem.

Theorem VIII.5.

(8.29) K−1
N (ker(Dξ −AN ) ∩ ker(Dη − BN) ∩ ker(MN ))

= ker(Dξ) ∩ ker((Dη − BN)KN ) ∩ ker(MNKN)

Proof: The proof is straightforward from the following, which uses the invertibility

of KN and (8.27).

(8.30) ker((Dξ − AN)KN) = ker(KNDξ) = ker(Dξ)

�

So after a change of coordinates given by KN , it is suitable to restrict to ξ = ξ∗.

Define B̃N = BN |ξ=ξ∗, which by choosing µ̃ ≡ 0, is a strictly upper triangular matrix

with entries in Ũ. Note that ((Dη − BN)KN)|ξ=ξ∗ = (Dη − B̃N) is a self-operator on

(O(Ω̃))IN

Now in a fashion similar to before, define

(8.31) ~yN =

[

y0,0 y1,1 y1,0 y2,2 · · · y2,0 · · · yN,N · · · yN,0

]T

,

where yi,j are complex numbers. Similarly, there exists a unique matrix LN (depen-

dent on µ) such that ~wN = LN~yN gives the solution to Dη ~wN = B̃N ~wN with initial

conditions ~y at η = η∗. The entries of LN are analytic functions with domain Ω̃.

By the strict upper triangularity of B̃N , LN is also upper triangular with 1’s on the
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diagonal. Note (LN)η~yN = Dη(LN~yN) = B̃NLN~yN for all ~yN , so

(8.32) (LN )η = B̃NLN

And by evaluating ~wN = LN~yN at η = η∗, we derive that

(8.33) LN |η=η∗ = Id.

So LN could have been independently defined according to equations (8.32) and

(8.33).

Note that LN is invertible and suggests a change of variables, which produces the

following key theorem.

Theorem VIII.6.

(8.34) L−1
N K−1

N (ker(Dξ − AN) ∩ ker(Dη − BN) ∩ ker(MN))

= ker(Dξ) ∩ ker(Dη) ∩ ker(MNKNLN )

Proof: As LN is invertible and constant with respect to ξ, it holds that

ker(DξLN ) = ker(LNDξ) = ker(Dξ).

So using Theorem VIII.5 yields that

(8.35) L−1
N K−1

N (ker(Dξ − AN) ∩ ker(Dη − BN) ∩ ker(MN))

= ker(Dξ) ∩ ker((Dη − BN)KNLN ) ∩ ker(MNKNLN )

Assume ~z is an element of the set given in (8.35). Then note

(8.36) 0 = ((Dη −BN )KNLN~z)|ξ=ξ∗ = (Dη − B̃N)LN~z = LNDη~z.

Thus ~z is a member of the RHS of (8.34).
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Now assume ~z is a member of the RHS of (8.34). Observe, using Lemma VIII.4

and the definition of KN , that

(8.37) (Dξ −AN )(Dη −BN)KNLN~z = (Dη − BN)(Dξ − AN)KNLN~z = 0

Using the definitions of KN and LN we get that

(8.38) (Dη − BN)KNLN~z = KN

(

((Dη − BN)KNLN~z)|ξ=ξ∗

)

= KN (Dη − B̃N )LN~z = 0

�

So now we answer the original question of this section.

Theorem VIII.7. Let µ(ξ, η) be an analytic function on some polydisc neighborhood

Ω of (ξ∗, η∗) that vanishes when ξ = ξ∗ and let N be a fixed non-negative integer.

The square matrices KN and LN (derived from the square matrices AN and BN)

and row vector MN are all defined (dependently on µ) by the previous discussion,

most directly (8.11), (8.12), (8.14), (8.27), (8.28), (8.32), and (8.33). µ satisfies

condition (∗N) (which means there exists P0, P1, . . . , PN analytic functions on Ω that

satisfy (8.1) with PN+1 = 0) if and only if the entries of the row vector MNKNLN

are linearly dependent over C.

Proof: By Theorem VIII.2 and Theorem VIII.3 we see that the existence of such

P0, P1, . . . , PN is equivalent to the complex linear space ker(Dξ − AN ) ∩ ker(Dη −

BN) ∩ ker(MN) being non-trivial (positive dimensional). By the change of variables

of Theorem VIII.6 the non-triviality of this space is equivalent to the non-triviality of

ker(Dξ)∩ker(Dη)∩ker(MNKNLN). This is equivalent to the existence of a constant
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complex-valued column vector in the kernel of MNKNLN which is equivalent to the

linear dependence of the entries of MNKNLN over C.

�

Remark: KN and LN can be integro-differentially expressed in terms of µ, and

MN can be expressed differentially in terms of µ. Also the appendix provides a

(sharp) means of determining the linear dependence of analytic functions in several

variables. This then shows that condition (∗N) on µ is equivalent to an integro-

differential condition on µ.

Theorem VIII.6 is also pertinent to bounding in CP2 while avoiding a line with

exception of non-tangential contact at one prescribed point, which was discussed

in Chapter V. In particular note Theorem VII.3, which motivates the following

theorem.

Theorem VIII.8. Let µ(ξ, η) be an analytic function on some polydisc neighborhood

Ω that vanishes when ξ = ξ∗ and let N be a fixed non-negative integer. Let square

matrices KN and LN and the row vector MN be defined dependently on µ as in

Theorem VIII.7. There exist analytic functions P0, P1, . . . , PN on Ω that satisfy (8.1)

with PN+1 = 0 and Dℓ
ξPk|ξ=ξ∗ = 0 for 0 ≤ ℓ < k ≤ N if and only if (MNKNLN )(0,0),

(MNKNLN)(1,1), . . ., (MNKNLN )(N,N) are linearly dependent over C.

Moreover, there exist such analytic functions P0, P1, . . . , PN on Ω that addition-

ally satisfy P0|η=η∗ 6= 0 if and only if (MNKNLN)(0,0) is a C-linear combination of

(MNKNLN)(1,1), . . ., (MNKNLN )(N,N).

Proof:

There exist such Pk if and only if there exists a non-zero ~vN in ker(Dξ − AN) ∩

ker(Dη − BN) ∩ ker(MN) such that vi,j|ξ=ξ∗ = 0 for all 0 ≤ j < i ≤ N . By Theo-
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rem VIII.6, this is equivalent to the existence of a non-zero ~yN in ker(Dξ)∩ker(Dη)∩

ker(MNKNLN) such that (LN~yN)(i,j) = (KNLN~yN)(i,j)|ξ=ξ∗ = 0, for all 0 ≤ j <

i ≤ N . Notably ~yN ∈ CIN and gives a non-trivial linear relation on the entries of

MNKNLN . The presence of a ~yN such that yi,j vanishes for 0 ≤ j < i ≤ N is equiva-

lent to the presence a non-trivial linear relation on (MNKNLN )(0,0), (MNKNLN )(1,1),

. . ., (MNKNLN )(N,N). So completing the proof requires showing the (LN~yN)(i,j) = 0

for 0 ≤ j < i ≤ N if and only if yi,j = 0 for 0 ≤ j < i ≤ N .

For any positive integer s, observe (8.13) gives thatDη(D
j
ξPi), for i−j ≥ s depends

only on (Dj′

ξ )Pi′ for i′ − j′ ≥ s. This gives a “graded” structure on this system of

differential equations. Specifically, the equations giving Dη(D
j
ξPi), for i−j ≥ s, form

a valid subsystem of differential equations. Thus (LN~yN)(i,j) = 0 for i− j ≥ s if and

only if yi,j = 0 for i− j ≥ s. Notably the case s = 1 gives us what we desire.

Note that P0|η=η∗ 6= 0 is equivalent to y0,0, which equals v0,0|ξ=ξ∗,η=η∗ , being

nonzero. In the context of the prior setting of this proof, y0,0 6= 0 is equivalent to

(MNKNLN)(0,0) being a C-linear combination of (MNKNLN )(1,1), . . ., (MNKNLN)(N,N).

This yields the final portion of the theorem.

�

Coupling this with Theorem VII.4 gives a computational means for determining

bounding within C × Ĉ (for N− = 0).



CHAPTER IX

A Calculational Scheme for a Characterization within CP2

Theorem IV.1, Theorem VI.2, and Theorem VI.6 have provided conditions equiv-

alent to bounding within CP2. But these conditions do not appear immediately

tractable. However in the case of N− = 0 the previous chapter yielded results of

a computable nature. In this chapter we establish some results which are favor-

able from a point of view of tractability and which make application of the previous

chapter to the general bounding question.

Let γ be a closed, oriented, C2 real 1-chain. We call γ1 a sub-chain of γ, if

the components of γ1 are contained in γ with the same orientation and no greater

absolute multiplicity. If γ1 is a sub-chain of γ, then it follows that γ − γ1 is a sub-

chain too. We say a collection of sub-chains apportion γ, if γ equals the sum of the

sub-chains given.

From the previous chapter, recall the condition (∗N) on µ, which was exam-

ined and shown equivalent to an integro-differential condition on µ through Theo-

rem VIII.7. We may relate condition (∗N) to the general bounding question through

the following theorem.

Theorem IX.1. For γ a closed, oriented, C2 real 1-chain in C2 ⊂ CP2, the following

are equivalent:

82
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(i) γ bounds a holomorphic 1-chain within CP2

(v) ∃ (ξ∗, η∗) with some neighborhood Ω such that ∃ integers N+ and N− and two

sub-chains γ+ and γ− apportioning γ such that

(9.1) µ+(ξ, η) =

∫ ξ

ξ∗

∂2

(∂ξ′)2
Gγ+(ξ′, η) dξ′

satisfies condition (∗N+) and

(9.2) µ−(ξ, η) =

∫ ξ

ξ∗

∂2

(∂ξ′)2
G−γ−(ξ′, η) dξ′

satisfies condition (∗N−).

(v’) Any (ξ∗, η∗) with any connected neighborhood Ω ⊆ Uγ satisfies (v).

Proof:

The implication (v’) =⇒ (v) trivially holds and the implication (v) =⇒ (i)

follows from the initial discussion of condition (∗N) at the beginning of Chapter VIII.

So it remains to show that (i) =⇒ (v’). So assume (i) and that γ bounds

a holomorphic 1-chain V within CP2. Decompose V according to its positive and

negative components to form V + and V − such that V = V + − V − and V + and V −

locally contain no common components. Denote the boundary of V + as γ+ and the

boundary of −V − as γ−. It is clear that γ = γ+ + γ−. If γ+ and γ− contain any

common components with opposite orientation, then it would have to follow that V +

and V − locally share a common component. Thus any components common to γ+

and γ− must have the same orientation. It then follows γ+ and γ− are sub-chains

that apportion γ.

Now γ+ bounds the positive holomorphic 1-chain V + within CP2 and γ− bounds

the positive holomorphic 1-chain −V − within CP2. By Lemma VI.7, the first para-
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graph of its proof, and the discussion following the definition of condition (∗N), (v’)

follows.

�

Any γ has only finitely many ways that it can be apportioned into two sub-chains

γ+ and γ−. Corresponding µ+ and µ− may be explicitly determined for any choice

of γ+ and γ−. So to test whether γ bounds a holomorphic 1-chain having prescribed

bounds (N+ andN−) on its degrees of intersections with the perspective line amounts

to testing whether any of finitely many pairs of µ+ and µ− satisfy condition (∗N+)

and condition (∗N−), respectively.

Testing condition (∗N) is tractable by Theorem VIII.7 and Theorem C.2. This

implies that determining whether γ bounds a holomorphic 1-chain with prescribed

bounds on the degrees of intersections with the perspective line may be achieved

calculationally. Furthermore we note that satisfying condition (∗N) is a closed con-

dition. So bounding with some prescribed degree bounds also amounts to a closed

condition. Therefore bounding (without degree bounds) constitutes an Fσ condition.



CHAPTER X

A New Approach and Alternate Characterizations within

Ĉ × Ĉ, C × Ĉ, and C2

One key item of the Dolbeault Henkin characterization is the form ω := z1
dg
g

=

w1

w0

(

d(w2−ξw0−ηw1)
w2−ξw0−ηw1

− dw0

w0

)

, a meromorphic 1-form on CP2, parameterized by ξ and

η. When integrated over γ, this form produces the function Gγ(ξ, η) given in (4.1).

We highlight two features of ω. One, when γ bounds a holomorphic 1-chain, the

residues arising from ω can be well characterized. Two, the residues so produced

contain enough information to fully describe a local portion of the holomorphic 1-

chain bounded by γ. (A local portion of the holomorphic 1-chain then “seed” a

global definition of a holomorphic 1-chain bounded by γ.) Boiling down to these two

features, we consider this the philosophical essence of the characterization within

CP2.

It is natural to consider if other forms could just as well serve in the place of ω.

In this chapter we craft an alternate form. And with this form we produce parallel

characterizations within Ĉ × Ĉ (and so CP2 by birationality), Ĉ × C, and C × C.

We explain the strategy for the construction of this new form. Assume we have a

closed, oriented, C2 real 1-chain in C2 which bounds a holomorphic 1-chain within

Ĉ× Ĉ. (For Ĉ× Ĉ we will use coordinates (z0 : z1)× (w0 : w1) with associated affine

coordinates (z, w) on C2. We define πz and πw as the corresponding projections onto
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Ĉ.) If we slice V with the line {z = ζ} (with ζ 6∈ πz(γ)), then we get a holomorphic

0-chain in Ĉ (unless V contains a component in {z = ζ}), which has support over a

discrete (and hence finite) set of points. Assuming there are no components of V in

{w0 = 0}, then for a generic choice of ζ , πw(V ∩ {z = ζ}) resides in C.

A finite divisor in C may be uniquely identified by its signed sum of positive

integer powers (with multiplicity) and its total degree, meaning the total sum of

multiplicities. (Since the total degree is the signed sum of zeroth powers, this is

the same as using the sums of non-negative integer powers.) If we assume V lies

in C2, then calculating the signed sum of mth powers of πw(V ∩ {z = ζ}) may be

achieved by integrating the form 1
2πi
wm dz

z−ζ
over γ. Place these forms, for m > 0, in

a generating function with respect to ξ. This generating function is

(10.1)

∞
∑

i=0

wi+1 dz

z − ζ
ξi =

w

1 − wξ

dz

z − ζ
.

The given series converges for appropriately small ξ and bounded w. It is useful to

note that this form is the ξ-logarithmic derivative of the form ( 1
w
− ξ)−1 dz

z−ζ
. (The

ξ-logarithmic derivative of f is (log f)ξ =
fξ

f
.)

In agreeing with what appears to be standard combinatorial practice, we left

the zeroth powers out of the generating function and consider the total degree in a

separate manner. But one might peradventure use a generating function incorpo-

rating the zeroth powers. Ambiguity of the zeroth powers, or total degree, precisely

correlates to ambiguity of the multiplicity of 0 in the divisor.

So define ν = w
1−ξw

dz
z−ζ

= w1

w0−ξw1

(

z0dz1−z1dz0

z0(z1−ζz0)

)

, which is a (ξ, ζ) parameterized

meromorphic 1-form in Ĉ × Ĉ. Define Hγ as

(10.2) Hγ(ζ, ξ) =
1

2πi

∫

γ

w

1 − ξw

dz

z − ζ
,

which is the integration of ν over γ. Define Uζ
γ = C\πz(γ) and Uξ

γ = C\(1/πw)(γ).
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These sets have the same flavor as Uγ from Chapter IV, page 16. Also define Ûζ
γ =

Ĉ\πz(γ). Note that Hγ(ζ, ξ) may be legitimately defined on Ûζ
γ × Uξ

γ , being 0 if

ζ = ∞. The following characterizations center on use of ν and Hγ, in a fashion

analogous to ω and Gγ.

To facilitate these characterizations, we assume that πz immerses spt γ into C with

finitely many self-intersections. This doesn’t appear to be an essential requirement,

but it still remains to be explored how it may be best weakened or removed.

Theorem X.1. For γ a closed, oriented, C2 real 1-chain in C2 ⊂ Ĉ × Ĉ such that

πz gives an immersion of spt γ into C with finite self-intersections, the following are

equivalent:

1. γ bounds a holomorphic 1-chain within Ĉ × Ĉ.

2. For any (ζ∗, ξ∗) with any neighborhood Ω (coordinates (ζ, ξ)) in Uζ
γ × Uξ

γ there

exist functions B(ζ, ξ) and C(ζ, ξ) defined and meromorphic on Ω, with B be-

ing the ξ-logarithmic derivative of a function rational in ζ and C being the

ξ-logarithmic derivative of a function rational in ξ, such that on Ω

(10.3) Hγ(ζ, ξ) = B(ζ, ξ) + C(ζ, ξ).

3. ∃ (ζ∗, ξ∗) with a neighborhood Ω (coordinates (ζ, ξ)) such that there exists func-

tions B(ζ, ξ) and C(ζ, ξ) defined and meromorphic on Ω with B being the ξ-

logarithmic derivative of a function rational in ζ and C being the ξ-logarithmic

derivative of a function rational in ξ, such that on Ω

(10.4) Hγ(ζ, ξ) = B(ζ, ξ) + C(ζ, ξ).
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Lemma X.2. Let γ be a closed, oriented, C2 real 1-chain in C2 ⊂ Ĉ × Ĉ such

that πz gives an immersion of spt γ into C with finite self-intersections. Suppose γ

bounds a holomorphic 1-chain V within Ĉ × Ĉ with no components in V(z0w0). On

Uζ
γ × Uξ

γ, there exists meromorphic functions B(ζ, ξ) and C(ζ, ξ) with B being the

ξ-logarithmic derivative of a function rational in ζ and C being the ξ-logarithmic

derivative of a function rational in ξ, such that Hγ(ζ, ξ) = B(ζ, ξ) + C(ζ, ξ).

Proof (of Lemma): Define T
ζ
V = {ζ ∈ U

ζ
γ | {z1 = ζz0} is not locally transverse

to V } and T
ξ
V = {ξ ∈ Uξ

γ | {w0 = ξw1} is not locally transverse to V }. Define

I
ζ
V = {ζ ∈ Uζ

γ | {z1 = ζz0} ∩ V ∩ {w0 = 0} 6= ∅} and I
ξ
V = {ξ ∈ Uξ

γ | {w0 =

ξw1} ∩ V ∩ {z0 = 0} 6= ∅}.

Let (ζ∗, ξ∗) ∈ (Uζ
γ\T

ζ
V )×(Uξ

γ\T
ξ
V ). For z near ζ∗, V may be suitably represented as

∑

j ǫjV(w−wj(z)), where wj(z) is a meromorphic function for z near ζ∗, and ǫj gives

an integer multiplicity. For w near 1
ξ∗

, V can be represented as
∑

j ǫjV(z− zj(1/w)),

where zj(1/w) is a meromorphic function for 1/w near ξ∗.

For ζ near ζ∗ ∈ Uζ
γ\T

ζ
V and ξ ∈ Uξ

γ , we define

(10.5) C(ζ, ξ) =
∑

j

ǫj
wj(z)

1 − wj(z)ξ

∣

∣

∣

∣

z=ζ

.

Note that this is the ξ-logarithmic derivative of
∏

j (1 − wj(ζ)ξ)
−ǫj . By symmetry

and a removable singularities argument, we can meromorphically extend this to a

single-valued definition on (ζ, ξ) ∈ Ûζ
γ × Uξ

γ , which is a ξ-logarithmic derivative of a

function rational in ξ.

For ξ near ξ∗ ∈ Uξ
γ\T

ξ
V and ζ ∈ Uζ

γ , we define

(10.6) B(ζ, ξ) =
∑

j

ǫj
z′j(1/w)

zj(1/w) − ζ

∣

∣

∣

∣

1/w=ξ

−
∑

j

ǫj
wj(z)

1 − wj(z)ξ

∣

∣

∣

∣

z=∞

,
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where the second term may also be denoted −C(∞, ξ), and well-defined by the pre-

vious. B(ζ, ξ) is the ξ-logarithmic derivative of
∏

j (zj(ξ) − ζ)ǫj
∏

j (1 − wj(∞)ξ)ǫj .

Again by symmetry and removing singularities, we can meromorphically extend this

to a single-valued definition on (ζ, ξ) ∈ Ûζ
γ × Uξ

γ . This gives B(ζ, ξ) as being the

ξ-logarithmic derivative of a function rational in ζ .

Assuming that V is locally transverse to {z0 = 0} and (ζ, ξ) ∈ (Uζ
γ\T

ζ
V )×(Uξ

γ\T
ξ
V ),

then Hγ(ζ, ξ) = B(ζ, ξ) + C(ζ, ξ) holds by elementary residue calculations. By

extension, this holds for (ζ, ξ) ∈ Uζ
γ × Uξ

γ . By taking the limit of “horizontal”

perturbations of V , we may drop the assumption that V be locally transverse to

{z0 = 0}.

�

Remark: We could alternatively move the right-most term of the definition for

B(ζ, ξ) to the definition for C(ζ, ξ). The proof would still remain valid as the term to

be transferred is the ξ-logarithmic derivative of a function rational in ξ and constant

in ζ . However C(ζ, ξ), as defined by (10.5), is the generating function of sums of

powers of the w-coordinates of V ∩ {z = ζ}. This may be seen by the following

equation.

(10.7)
∑

j

ǫj
wj(z)

1 − wj(z)ξ

∣

∣

∣

∣

z=ζ

=
∑

j

ǫj

∞
∑

k=0

wj(z)
k+1ξk

∣

∣

∣

∣

∣

z=ζ

=
∞
∑

k=0

(

∑

j

ǫjwj(ζ)
k+1

)

ξk.

Now we present some lemmas in regard to rationality.

Lemma X.3. Let R be a Laurent series of the form
∑N

q=−∞ σqt
j, N ∈ Z. R gives

a rational function in t if and only if for some ℓ > 0, det[Σi0 Σi1 · · ·Σiℓ ] = 0 for all

0 > i0 > i1 > · · · > iℓ, where ΣT
i = [σi σi−1 · · ·σi−ℓ+1].

This lemma is routinely present in the literature on boundaries of holomorphic



90

chains. This statement and proof are essentially quoted from [17], where it is at-

tributed as classical work due to Hadamard.

Proof: Note the following sequence of equivalent statements.

1. R represents a rational function with a denominator of degree at most ℓ.

2. ∃ polynomials Q =
∑ℓ

j=0 djt
j and P such that QR = P .

3. ∃ (d0, d1, . . . , dℓ) ∈ Cℓ+1 such that
∑ℓ

j=0 djσq−j = 0, for all q < 0.

4. ∃ ℓ > 0, det[Σi0 Σi1 · · ·Σiℓ ] = 0 for all 0 > i0 > i1 > · · · > iℓ, where ΣT
i =

[σi σi−1 · · ·σi−ℓ+1].

�

Lemma X.4. Let Ω be a domain in C with an arc α in the boundary. Suppose that

fj(z) are functions continuous on Ω ∪ α and holomorphic on Ω, such that f(z, w) =

∑N
j=∞ fj(z)w

j on (Ω ∪ α) × U , for some open set U not containing zero. If f(z, w)

is rational in w with a denominator of degree at most ℓ for z ∈ α, then f(z, w) is

rational in w with a denominator of degree at most ℓ for z ∈ Ω.

Proof: det[Σi0(z) Σi1(z) · · ·Σiℓ(z)] for 0 > i0 > i1 > · · · > iℓ, where ΣT
i (z) =

[fi(z) fi−1(z) · · · fi−ℓ+1(z)], are functions continuous on Ω ∪ α and holomorphic on

Ω. By Lemma X.3 these vanish for z ∈ α, thus they vanish on Ω, and by the reverse

application of Lemma X.3, this lemma holds.

�

We also will employ a result of Plemelj, which we simply state here and refer to

[21].
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Lemma X.5. Let α be a simple C1 arc. Let φ be a Hölder continuous function on

α. Let U+ and U− be two disjoint domains containing α in the boundary. Assume

that α is oriented positively with respect to U+ and negatively with respect to U−.

The function Φ+ on U+, given by

(10.8) Φ+(z0) =
1

2πi

∫

α

φ(z) dz

z − z0

has a continuous extension to U+ ∪ α and the function Φ− on U−, given by

(10.9) Φ−(z0) =
1

2πi

∫

α

φ(z) dz

z − z0

has a continuous extension to U− ∪ α. These continuations also satisfy

(10.10) Φ+(z0) − Φ−(z0) = φ(z0)

for z0 ∈ α, which we refer to as a jump condition.

Proof (of Theorem): Note that 2 =⇒ 3 is trivial and that Lemma X.2 establishes

1 =⇒ 2. So it remains to show 3 =⇒ 1.

Choose U ′ and U neighborhoods of ζ∗ and ξ∗, respectively, such that U ′×U ⊆ Ω.

Then by the condition on B there exist non-negative integers M and N and functions

p0(ξ), p1(ξ), . . . , pM(ξ) and q0(ξ), q1(ξ), . . . , qN (ξ) analytic on U such that

(10.11)

B(ζ, ξ) =
p′0(ξ) + p′1(ξ)ζ + · · ·+ p′M(ξ)ζM

p0(ξ) + p1(ξ)ζ + · · ·+ pM(ξ)ζM
−
q′0(ξ) + q′1(ξ)ζ + · · · + q′M(ξ)ζN

q0(ξ) + q1(ξ)ζ + · · · + qM(ξ)ζN

on U ′ × U . With this definition we can extend B meromorphically to Ĉ × U . For

later use, note that the pole set of B contains no components in any variety given

as ζ = ζ0. For if (ζ0, ξ) were a pole of B for all ξ ∈ U , then ζ0 must be a root (of

some degree) of one the denominators of (10.11). But then it would be a root (of

the same degree or more) of the corresponding numerator.
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Define

(10.12) G(ζ, ξ) = Hγ(ζ, ξ)− B(ζ, ξ)

meromorphically on Uζ
γ × U . For λ ∈ U , define Pλ = {ζ ∈ Uζ

γ | G(ζ, λ) = ∞}.

Since Hγ(ζ, ξ) is holomorphic on this domain, note that the pole sets of G and B are

equivalent. In particular the pole set of G does not contain components in lines of

the form {ζ = ζ0}. Therefore Pλ is always a discrete set.

Also choose an integer b0 and define κ0(ζ) = 1
2πi

∫

γ
dz

z−ζ
−b0. This is locally constant

and defined on (Ĉ\πz(γ)) × U .

Motivation: The function G is an extension of the function C. We will view G as

prescribing the generating function of signed sums of powers of the w-coordinates of

a holomorphic 1-chain sliced with {z = ζ}. Along with κ0(ζ), which will prescribe

the total degree on such slices, we maintain this provides enough information to

(uniquely) construct a holomorphic 1-chain bounded by γ. However this requires G

to be of a particular form for it to encode “valid data”, namely to be the ξ-logarithmic

derivative of a function rational in ξ. So the next section of this proof is devoted to

showing this particular form holding for C must continue to G. Our method to do

this is to look at the “ξ-logarithmic integral” of −G(ζ, ξ). In fact the logarithmic

integral may be used to give a function whose divisor is locally the holomorphic 1-

chain we wish to construct. To illustrate this point, consider C(ζ, ξ) in the form of

(10.5), with c0 =
∑

j ǫj denoting the total degree. Then for (z, w) ∈ U ′ × (1/U),

(10.13) wc0 exp

(

−

∫ 1
w

λ

C(z, ξ) dξ

)

=
∏

j

(

w − wj(z)

1 − wj(z)λ

)ǫj

.

This outlines the path remaining for this proof.

For λ ∈ U define Qλ = {(z, w) ∈ Uζ
γ × (1/U) | z 6∈ Pλ ∪ P 1

w
} = {(z, w) ∈ Uζ

γ ×

(1/U) | G(z, λ) 6= ∞, G(z, 1
w
) 6= ∞}. On Qλ, define the non-vanishing holomorphic
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function Fλ as

(10.14) Fλ(z, w) = wκ0(z) exp

(

−

∫ 1
w

λ

G(z, ξ) dξ

)

.

Recall (10.12) and note that on Uζ
γ × U , H is a holomorphic function and B is the

ξ-logarithmic derivative of a meromorphic function. B(ζ, ξ) may be represented as

Rξ(ζ,ξ)

R(ζ,ξ)
, where R(ζ, ξ) is a meromorphic function. The set of poles and zeros for R is

equal to the pole set for B and thus the pole set for G. Now

(10.15) −

∫ 1
w

λ

G(z, ξ) dξ = −

∫ 1
w

λ

Hγ(z, ξ) dξ − log(R(z,
1

w
)) + log(R(z, λ))

Note this function is holomorphic on Qλ. Though it is technically multi-valued, it

is single-valued modulo addition of integer multiples of 2πi. For one this shows that

(10.14) constitutes a valid definition for Fλ. By analyticity, locally about points in

Qλ, the expression in (10.15) has a series expansion of the form

(10.16)
∞
∑

j=0

aj(z)(
1

w
)j ,

where aj(z) are locally defined holomorphic functions. We can similarly derive such

series for exp
(

−
∫ 1

w

λ
G(z, ξ) dξ

)

. Thus we have a Laurent series for Fλ of the form

(10.17) Fλ(z, w) =

κ
∑

j=−∞

fλ,j(z)w
j ,

where fλ,j(z) are locally defined holomorphic functions.

Furthermore, on Qλ1 ∩Qλ2 , the expression

(10.18)
Fλ2(z, w)

Fλ1(z, w)
= exp

(

−

∫ λ1

λ2

G(z, ξ) dξ

)

is independent of w. Observe Fλ1 is rational with respect to w if and only if Fλ2 is.

For (ζ, ξ) ∈ U ′ ×U , G(ζ, ξ) = C(ζ, ξ) is the ξ-logarithmic derivative of a function

rational in ξ, by the theorem’s assumption. Therefore for all λ ∈ U , Fλ is rational

with respect to w on Qλ ∩ (U ′ × 1/U).
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Now consider λ fixed. For polydiscs contained compactly within Qλ, we may

apply Lemma X.4 and see that rationality in w of Fλ continues within connected

components of Qλ. We will get rationality in w of Fλ on all of Qλ by showing

rationality in w transfers over arcs in πz(γ).

Let α be a simple arc in πz(γ) avoiding the self-intersection set and Pλ and sepa-

rating two connected components of C\πz(γ), which we’ll label U+ and U−. Assume

α is oriented positively with respect to U+ and negatively with respect to U−. (In

other words, local to α, d[U+] = [α] = −d[U−].) We suppose that Fλ is rational in w

over U− (technically Qλ ∩ (U− × (1/U)). Define m to be the multiplicity (possibly

negative) of α in πz(γ). (In application we may reverse the direction of α and the

sign of m if we have Fλ being rational in w over U+.)

Because of the immersion assumption on spt γ, we may let γ be given over α as

z ∈ α 7→ (z, f(z)), for some function f .

By Plemelj’s Theorem, given as Lemma X.5, Hγ continuously extends to α from

either side. Namely there exist functions H+
γ continuous on U+ ∪ α and H−

γ contin-

uous on U− ∪α that agree with Hγ on U+ and U−, respectively. Plemelj’s Theorem

also describes the jump condition between these two continuous extensions to α. This

yields that H+
γ (ζ, ξ)−H−

γ (ζ, ξ) = m f(ζ)
1−ξf(ζ)

, for ζ ∈ α. We get similar extensions κ+
0

and κ−0 of κ0 with the jump condition κ+
0 − κ−0 = m. These continuous extensions

and determinations of the jump conditions then cascade through the definitions for

G and Fλ. Notably the jump condition, G+ − G−, for G is the same as that for

H+
γ −H−

γ . This gives a multiplicative jump condition on Fλ.

(10.19)
F+

λ (z, w)

F−
λ (z, w)

= wκ+
0 (z)−κ−

0 (z) exp

(

−

∫ 1
w

λ

G+(z, ξ) −G−(z, ξ) dξ

)

= wm exp

(

m

∫ 1
w

λ

−f(z)

1 − ξf(z)
dξ

)

= wm

(

1 − 1
w
f(z)

1 − λf(z)

)m

=

(

w − f(z)

1 − λf(z)

)m
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For z ∈ α, there will exist a small neighborhood about it, U ′′′, in either U+ ∪ α or

U− ∪α and a open set U ′′ in (1/U) such that (U ′′′\α)×U ′′ ∈ Qλ, on which we get a

Laurent series as assumed for Lemma X.4. Therefore rationality in w holds for F−
λ

for z ∈ α. By the multiplicative jump condition this carries over to F+
λ for z ∈ α,

though possibly with a denominator of higher degree. This then implies rationality

in w of Fλ for z over U+.

C\πz(γ) consists of only finitely many components. Therefore by the previous,

Fλ is rational with respect to w on Qλ, and may be extended meromorphically

(rationally in w) to (Uζ
γ\Pλ) × Ĉ. Define Sλ to be the divisor of Fλ on (Uζ

γ\Pλ) ×

Ĉ. As (10.18) gives that Fλ1 multiplicatively differs from Fλ2 by a non-vanishing

holomorphic function independent of w, Sλ1 and Sλ2 agree on (Uζ
γ\(Pλ1 ∪ Pλ2))× Ĉ.

So we may glue the Sλ together to form a holomorphic 1-chain in U
ζ
γ × Ĉ. By the

jump conditions and some arguments employed in Harvey and Lawson [15], we can

extend S to (Ĉ × Ĉ)\ spt γ and note that d[S] = [γ].

�

From this we can derive another characterization for C × Ĉ

Theorem X.6. For γ a closed, oriented, C2 real 1-chain in C2 ⊂ C × Ĉ such that

πz gives an immersion of spt γ into C with finite self-intersections, the following are

equivalent:

1. γ bounds a holomorphic 1-chain within C × Ĉ

2. For any (ζ∗, ξ∗) with any connected neighborhood Ω (coordinates (ζ, ξ)) in Uζ
γ ×

Uξ
γ with ζ∗ in the unbounded component of Uζ

γ, there exists a function B defined

and analytic on Ω and being the ξ-logarithmic derivative of a function rational
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in ζ, such that on Ω

(10.20) Hγ(ζ, ξ) = B(ζ, ξ).

3. ∃ (ζ∗, ξ∗) with a connected neighborhood Ω (coordinates (ζ, ξ)) with ζ∗ in the

unbounded component of U
ζ
γ, such that there exists a function B defined and

analytic on Ω and being the ξ-logarithmic derivative of a function rational in ζ,

such that on Ω

(10.21) Hγ(ζ, ξ) = B(ζ, ξ).

Proof: Let U ′
0 denote the unbounded component of C\πz(γ). Assume condition

1, that is there is a holomorphic 1-chain V bounded by γ within C × Ĉ. By the

maximum principle it holds that sptV ∩ U ′
0 × Ĉ = ∅. Therefore proceeding via the

calculation in Lemma X.2 with Ω ⊂ U0 × Ĉ, we get that C(ζ, ξ) = 0 on Ω. Thus 1

=⇒ 2.

2 clearly implies 3, so it only remains to show the 3 implies 2. So assume condition

3 which also implies condition 3 of Theorem X.1, using B as given and C given as

being zero. Applying the proof of Theorem X.1, one constructs a holomorphic 1-chain

V bounded by γ. Using C = 0 in Ω, along with choosing b0 such that κ0(ζ
∗) = 0,

gives that Fλ equals 1 for z near ζ∗. Thus the constructed holomorphic 1-chain V

does not intersect the line {z = ζ∗}. This implies spt V ⊂ (C\U0) × Ĉ. So V is

bounded by γ within C × Ĉ.

�

A slightly different statement along similar grounds is the following.
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Theorem X.7. For γ a closed, oriented, C2 real 1-chain in C2 ⊂ Ĉ × C such that

πz gives an immersion of spt γ into C with finite self-intersections, the following are

equivalent:

1. γ bounds a holomorphic 1-chain within Ĉ × C

2. For any (ζ∗, ξ∗) with any neighborhood Ω (coordinates (ζ, ξ)) in Uζ
γ ×Uξ

γ with ξ∗

in the component of Uξ
γ containing zero, there exists a function C defined and

analytic on Ω and being the ξ-logarithmic derivative of a function rational in ξ,

such that on Ω

(10.22) Hγ(ζ, ξ) = C(ζ, ξ).

3. ∃ (ζ∗, ξ∗) with a neighborhood Ω (coordinates (ζ, ξ)) with ξ∗ in the component of

Uξ
γ containing zero, such that there exists a function C defined and analytic on

Ω and being the ξ-logarithmic derivative of a function rational in ξ, such that

on Ω

(10.23) Hγ(ζ, ξ) = C(ζ, ξ).

Proof: Let U0 be the component of Uξ
γ containing 0. Assume 1, so let V be

a holomorphic 1-chain bounded by γ within Ĉ × C. Apply Lemma X.2, with the

modification that the second term for the expression for B in (10.6) be instead

transferred to the expression for C in (10.5). (See the remark following that lemma.)

The B so derived will be zero, thus implying 2.

Clearly 2 =⇒ 3. Now assume 3. We use the construction from the proof of 3

=⇒ 1 of Theorem X.1, using B = 0 and C as given. Thus G(ζ, ξ) is holomorphic on

Uζ
γ×U , implying Pλ = ∅ and thus Fλ is holomorphic and non-vanishing on Uζ

γ×(1/U).
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As ξ∗ ∈ U , this gives that the constructed holomorphic 1-chain V (which is bounded

by γ) does not intersect {w0 = ξ∗w1}. Therefore sptV ∈ Ĉ × (C\(1/U0)). Thus 1

follows.

�

And in the same vein, we can derive an analogous result for C2.

Theorem X.8. For γ a closed, oriented, C2 real 1-chain in C2 such that πz gives an

immersion of spt γ into C with finite self-intersections, the following are equivalent:

1. γ bounds a holomorphic 1-chain within C2

2. For any (ζ∗, ξ∗) with any neighborhood Ω (coordinates (ζ, ξ)) in Uζ
γ × Uξ

γ with

ζ∗ in the unbounded component of Uζ
γ and ξ∗ in the component of Uξ

γ containing

zero, then on Ω

(10.24) H(ζ, ξ) = 0.

3. ∃ (ζ∗, ξ∗) with a neighborhood Ω (coordinates (ζ, ξ)) with ζ∗ in the unbounded

component of Uζ
γ and ξ∗ in the component of Uξ

γ containing zero, then on Ω

(10.25) H(ζ, ξ) = 0.

Proof: Let U ′
0 be the unbounded component of Uζ

γ and U0 be the component of

Uξ
γ containing zero. 1 =⇒ 2 follows by application of the proof Lemma X.2. 2 =⇒

3 follows trivially.

Now assume 3 and apply the construction from the proof of Theorem X.1 to

construct a holomorphic 1-chain V bounded by γ within Ĉ × Ĉ, using B and C as

zero in the given neighborhood Ω of (ζ∗, ξ∗). Examining the procedure (it is helpful
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to note the proofs of Theorem X.6 and Theorem X.7) shows that the constructed

holomorphic 1-chain V has support contained in (C\U ′
0)×(C\(1/U0)). Thus 1 holds.

�

The system of moment conditions for γ in C2 is equivalent to the following reduced

system of monomial moment conditions on γ.

(10.26)

∫

γ

wmzn dz = 0 for all m ≥ 1, n ≥ 0.

Now observe that w
1−wξ

=
∑∞

i=0w
i+1ξi and dz

z−ζ
=
∑∞

i=0 z
iζ−(i+1)dz. So the monomial

moments
∫

γ
wmzn dz exactly constitute the coefficients in the Taylor expansion of

H(ζ, ξ) about (∞, 0). This gives an elegant correlation between Theorem X.8 and

the characterization within C2 due to moment conditions.



CHAPTER XI

Conclusion

Thus far we have examined a number of issues concerning characterizations within

the surfaces CP2 (or its birational equivalent Ĉ× Ĉ), C× Ĉ, and C2. We have given

some adaptations for making the Dolbeault and Henkin characterization within CP2

more versatile and tractable. Also we demonstrated that for a generic set of closed,

oriented, C2 real 1-chains that being a boundary of a holomorphic 1-chain is invariant

under birational maps. We employed this in forming the first characterization within

C× Ĉ. Furthermore, by developing a distinctly different approach, we demonstrated

additional characterizations for Ĉ × Ĉ, C × Ĉ, and even C2.

There remain many questions and avenues for continued inquiry and research.

Presently, we possess two characterizations for Ĉ × Ĉ, one derived from the form

ω and one from ν. This similarly holds for C × Ĉ. We may refer to these as

the ω and ν characterizations, respectively. The presence of these two families of

characterizations raises the following three questions.

First, how do these characterizations compare and contrast? We have not pre-

sented a means of calculation for the ν characterizations, but that would be one

element for comparison. The rationality test due to Hadamard, Lemma X.3 should

give a calculational means for determining boundaries of holomorphic 1-chains within

100
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C×Ĉ. However a calculational means for boundaries of holomorphic 1-chains within

Ĉ × Ĉ appears to require more intense study. Also there are certain refinements

to the computational method for ω characterizations that appear feasible though

not yet confirmed. For instance instead of having condition (∗N) being expressed as

an integro-differential equation condition, it appears it could possibly be expressed

purely as a differential equation condition. (Already the author can remove the need

for anti-differentiation in η. Doing the same for ξ appears promising, but needs

further examination.)

Secondly, what forms, other than ω and ν, could be used to produce characteriza-

tions within these surfaces? The introduction to Chapter X describes what appears

to be the essential factors for a form to generate a characterization. So one aim is to

produce a general class of forms with corresponding characterizations.

Thirdly, can we produce such forms, and resulting characterizations, on other

complex surfaces? In this regard, one promising class of targets is the products of

Riemann surfaces. A suitable selection of functions that separate points on a complex

curve then seems to direct the construction a generating function that separates

divisors. One may observe this in the philosophy of selecting the generating function

w
1−ξw

in Chapter X. One immediate focus would be on products of Riemann surfaces.

Other potential spaces of study include line bundles and projective bundles over

Riemann surfaces plus Zariski-open subsets of rational complex surfaces.

Separate from the previous sequence of questions there are others to be explored.

One topic for further research is looking into the use of birational maps in porting

characterizations to other surfaces. Also we may wish to broaden our scope beyond

the case of dimension one and codimension one. There is some promise in generalizing

the methods of Chapter X to Cr × Ĉs.
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Reaching beyond just those questions which seem immediately accessible, there

appear some rather grand, inspiring questions. What do the boundaries of holo-

morphic chains communicate about an ambient space? Is there a uniform rubric or

template for characterizations so to facilitate comparisons of ambient spaces? What

suitable classifications of complex spaces are possible by viewing the collection the

boundaries of holomorphic chains a space contains? For instance, Stein spaces ap-

pear logically as one class. But amongst the non-Stein spaces, what distinguishing

properties are natural from this point of view?

The work and results developed in this dissertation contribute to the substance

and motivation in studying the boundaries of holomorphic chains. These concluding

questions demonstrate that the area is fertile and has ample promise for further fruit.
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APPENDIX A

A Classical Model Relevant to Studying the Behavior of

Holomorphic 1-Chains near a Line

In considering the behavior of a variety near a line in CP2, we consider a partic-

ularly simple yet general model in this section.

We use coordinates (x, y) for C2. An analytic variety in C×Ĉ with no components

of the form {x = x0} can be viewed as a branched cover of C, with the projection

map π(x, y) = x. If x0 is not a branch point and the variety is bounded near x = x0,

then the variety near x = x0 may be locally given as the graphs of holomorphic

functions y = fj(x). In this case the fj have a convergent Taylor expansion of the

form

(A.1) f(x) =

∞
∑

j=0

cj(x− x0)
j .

If the variety should be unbounded near x = x0, then a Laurent expansion would

be required with meromorphic fj. If x0 were a branch point, then a Puiseux expan-

sion (permitting fractional exponents) would be required to express the multi-valued

fj . By a multi-valued function, we mean a global analytic function in the sense of

Weierstrass. (Ahlfors [2](Chapter 8 Sections 1 and 2) provides some appropriate

definitions followed by a study of the above in the case of an algebraic variety.)

We confine our focus to a local region about the line x = 0. Let ∆r = {x | |x| < r},

∆∗
r = {x | 0 < |x| < r} and Sθ1,θ2

r = {x | 0 < |x| < r, ∃n s.t. θ1 < arg(x)+n2π < θ2}.

104
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We define a Laurent-Puiseux germ (about 0) f as a holomorphic function defined,

for some small r, on an open sector Sθ1,θ2
r intersecting the positive real axis (i.e.

θ1 < 0 < θ2) such that analytic continuation counter-clockwise about the origin h

times produces the original function on Sθ1,θ2
r for some positive h. Equivalently, it

may be defined as a single valued function on a h sheeted cover of the small punctured

disc ∆∗
r . If h is the smallest non-zero number such that this occurs, then we say f

is h-valued. For our purposes here, we will further assume that a Laurent-Puiseux

germ is locally meromorphic at x = 0. This means that f is O(|x|m) as x → 0 for

some m ∈ Z.

(What we call a Laurent-Puiseux germ might possibly be more appropriately

called a multi-valued meromorphic germ. However this is presuming finite-sheeted

as part of our meaning for multi-valued, which may or may not be standard. But

in any case, for conciseness of notation, we use Laurent-Puiseux germs or multi-

valued meromorphic germs synonymously to mean the definition given above, which

is admittedly tailored for our purposes here.)

Let f be a Laurent-Puiseux germ. We term the kth associate of f to be the

Laurent-Puiseux germ produced by analytic continuation about the origin k times

counter-clockwise, starting with f . We define the graph of f to be the graph of f

and all its continuations. Note that f has the same graph as its associates.

For a Laurent-Puiseux germ, there is a Laurent-Puiseux expansion about 0 of the

form

(A.2) f(x) =
∞
∑

j=−M

cj/hx
j/h =

∞
∑

j=−M

cj/hξ
j,

where we understand ξ as x1/h, viewed as a Laurent-Puiseux germ or as the coordinate
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for a h sheeted cover of ∆∗
r . The Laurent-Puiseux expansion of the kth associate is

(A.3)

∞
∑

j=−M

cj/hω
kjxj/h,

where ω is the hth primitive root of unity. We may typically refer to the Laurent-

Puiseux expansion of f as

(A.4) f(x) =
∑

p

cαx
p,

where we understand the cp to zero for p off of some subset of a finitely generated

rational lattice bounded from below. (In this section we may notate a sum over an

infinite index set, being considered valid so long as the indices with non-zero terms

are finite or discrete and so prescribe a legitimate sum or series.)

The set of Laurent-Puiseux germs forms a ring which contains the ring of germs

of holomorphic functions. Note that the elementary symmetric polynomials of a

Laurent-Puiseux germ and its associates will be single valued and hence meromor-

phic. Thus the ring of Laurent-Puiseux germs is an algebraic extension of the field

of meromorphic germs. Furthermore this may be used to show that the graph of a

Laurent-Puiseux germ is an analytic variety in ∆∗
r × C, which may be extended to

an analytic variety in ∆r × Ĉ.

Differentiation of Laurent-Puiseux germs is naturally understood locally and can

also be done via its Laurent-Puiseux expansion. We may also speak of the evaluation

of a Laurent-Puiseux germ f at 0, which is denoted as f |x=0. Given the Laurent-

Puiseux expansion of f in (A.4), We say f |x=0 = ∞ if cp 6= 0 for any p < 0. If cp = 0

for all p < 0, then we say f |x=0 = c0.

A family of Laurent-Puiseux germs {hj}j∈J is termed associate symmetric or a.s.

if all associates of each member are also contained with equal multiplicity. Often

we will refer to a family of Laurent-Puiseux germs {hj}j∈J tagged with objects aj
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(integers or, most generally, Laurent-Puiseux germs). Such a family is called a.s. if

each member hj with tag aj implies the inclusion of the kth associate of hj tagged

with the kth associate of aj, with equal multiplicity. A distinct family of Laurent-

Puiseux germs {hj}j∈J , with or without tags, is one such that hj = hj′ always implies

j = j′.

First we begin with the following theorem, which is useful as a general tool in this

study.

Theorem A.1. Let {hj}j∈J be a finite family of Laurent-Puiseux germs about x = 0,

tagged with Laurent-Puiseux germs gj. If for all but finitely many m ≥ 1,

∑

j gj(x)hj(x)
m

xm−1

∣

∣

∣

∣

x=0

= 0,

then for all j′ such that
hj′(x)

x

∣

∣

∣

x=0
= ∞ it holds that

∑

j | hj=hj′

gj ≡ 0.

The proof of this theorem will require some linear algebra calculations. Define

the n× n matrix Vk,{m1,...,mℓ}, where n = m1 + · · ·+mℓ, as

(A.5) Vk,{m1,...,mℓ} =




















yk
1 kyk−1

1 · · ·
(

k
m1−1

)

yk−m1+1
1 yk

2 · · ·
(

k
mℓ−1

)

yk−mℓ+1
ℓ

yk+1
1 (k + 1)yk

1 · · ·
(

k+1
m1−1

)

yk−m1+2
1 yk+1

2 · · ·
(

k+1
mℓ−1

)

yk−mℓ+2
ℓ

...
...

...
...

...

yk+n−1
1

(

k+n−1
1

)

yk+n−2
1 · · ·

(

k+n−1
m1−1

)

yk−m1+n
1 yk+n−1

2 · · ·
(

k+n−1
mℓ−1

)

yk−mℓ+n
ℓ





















.

Lemma A.2.

(A.6) detVk,{m1,...,mℓ} =

(

ℓ
∏

j=1

y
kmj

j

)(

∏

1≤j<i≤ℓ

(yi − yj)
mjmi

)
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Proof: The determinant of this matrix can be recursively determined by the

relation detVk,{m1,m2,...,mℓ} = yk
1

(

∏ℓ
j=2(yj − y1)

m
j

)

detVk,{m1−1,m2,...,mℓ}. This relation

may be derived by simultaneously subtracting from each row the y1 multiple of the

row preceding, factoring each column appropriately, and then calculating by cofactors

using the first column. From this relation the lemma easily follows.

�

Proof (of Theorem): Define Gj(x) =
∑

j | hj=hj′
gj. Without loss of generality,

we may assume Gj 6= 0 for all j ∈ J .

Suppose for sake of contradiction, there exists a j′ such that
hj(x)

x
|x=0 = ∞.

Among such j′, consider the increasing (possibly finite) sequence of exponents of the

Laurent-Puiseux expansion of Gjwith non-zero coefficients. Now fix j′ to be such

that this sequence is lexicographically minimal, treating the presence of a sequence

term as lexicographically preceding the absence of a sequence term. (e.g. (1/2, 2, . . .)

precedes (3/4, 3/2, . . .) and (1/2, 2, . . .) precedes (1/2, 2) precedes (1/2).) Define this

lexicographically minimal sequence as p1, p2, . . . , pN or p1, p2, . . . (defining N = ∞).

Define the Laurent-Puiseux expansions of hj and gj as

(A.7) hj(x) =
∑

p

cj,px
p

(A.8) gj(x) =
∑

p

bj,px
p

Let β represent a finite sequence (of length at most N) of non-negative integers,

(b1, b2, . . . , bℓ). Define |β| =
∑

q βq, ||β|| =
∑

q βqpq, and β! =
∏

q βq!.

Define, for j ∈ J , i,m ≥ 0, p ∈ Q,

(A.9) sj,i,m,p =
∑

β | β1=···=βi=0,|β|=m,||β||=p

m!

β!

∏

q

c
βq

j,q.
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Note this is well-defined as there are only finitely many β which meet the given

criteria. (In fact in most cases there are no such β.) Next define

(A.10) aj,i,m,p =
∑

p′

bj,p−p′sj,i,m,p′,

A basic calculation reveals

(A.11)

sj,i,m,p =
m
∑

k=0

(

m

k

)

ckj,pi+1
sj,i+1,m−k,p−kpi+1

=
m
∑

k=0

(

m

k

)

cm−k
j,pi+1

sj,i+1,k,p−(m−k)pi+1
.

and

(A.12) aj,i,m,p =

m
∑

k=0

(

m

k

)

cm−k
j,pi+1

aj,i+1,k,p−(m−k)pi+1
.

The definitions of sj,i,m,p and aj,i,m,p when i = 0 provide the following Laurent-

Puiseux expansions.

(A.13) hj(x)
m =

∑

p

sj,0,m,px
p

(A.14) gj(x)hj(x)
m =

∑

p

aj,0,m,px
p

The initial assumption of the theorem implies that
∑

j aj,0,m,p = 0 for p ≤ m− 1,

except for finitely many values of m. Equation (A.12) then provides

(A.15)
∑

j∈J

aj,0,m+κ,p+κp1 =
∑

j∈J

m+κ
∑

k=0

[(

m+ κ

k

)

cm+κ−k
j,p1

aj,1,k,p+(k−m)p1

]

=
∑

λ∈C

m+κ
∑

k=0





(

m+ κ

k

)

λm+κ−k





∑

j | cj,p1
=λ

aj,1,k,(p−mp1)+kp1







 .

Assume m and p are fixed. For κ arbitrarily large, the LHS of the above is al-

ways zero (by the theorem’s initial assumption and since p1 < 1). By the mini-

mality of p1, it holds that aj,1,k,(p−mp1)+kp1
is zero for all j for sufficiently large k.

Thus we have an infinite set of homogeneous linear equations on terms of the form
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∑

j | cj,p1
=λ aj,1,k,(p−mp1)+kp1

. A well selected subset of these equations will imply that

a column vector containing entries
∑

j | cj,p1
=λ aj,1,k,p+(k−m)p1, for the finitely many

relevant values of k and λ, is in the null space of a matrix of the form (A.5), the

determinant of which is calculated by Lemma A.2. It follows that

(A.16)
∑

j | cj,p1
=λ

aj,1,m,p = 0

for all m, p, and λ 6= 0.

We proceed with an induction argument, using the above as the base case. Assume

that it has been established that

(A.17)
∑

j | ∀i′≤i,cj,p
i′

=λi′

aj,i,m,p = 0,

for all m, p, and nonzero λ1, . . . , λi. Then

(A.18) 0 =
∑

j | ∀i′≤i,cj,p
i′

=λi′

aj,i,m+κ,p+κpi+1

=
∑

j | ∀i′≤i,cj,p
i′

=λi′

m+κ
∑

k=0

[(

m+ κ

k

)

cm+κ−k
j,pi+1

aj,i+1,k,p+(k−m)pi+1

]

=
∑

λi+1∈C

m+κ
∑

k=0





(

m+ κ

k

)

λm+κ−k
i+1





∑

j | ∀i′≤i+1,cj,p
i′

=λi′

aj,i+1,k,p+(k−m)pi+1







 .

Assume m and p are fixed. The expression
∑

j | ∀i′≤i+1,cj,p
i′

=λi′
aj,i+1,k,p+(k−m)pi+1

is

zero for large enough values of k. By application of linear algebra and Lemma A.2,

we derive (A.17) with i+ 1 in the place of i. Therefore we inductively conclude that

(A.17) holds for all values of i ≤ N .

This holds in particular when m = 0. Then note aj,i,0,p = bj,p. By the choice of

p1, p2, . . . , pN (or p1, p2, . . .) we conclude that
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(A.19)
∑

j | hj=hj′

bj,p =
∑

j | ∀i′≤i,cj,p
i′

=cj′,p
i′

bj,p = 0,

for all p. Thus Gj′ ≡ 0 which leads to a contradiction.

�

A result related to this is the following.

Theorem A.3. Let {hj}j∈J be a finite family of Laurent-Puiseux germs about x = 0,

tagged with Laurent-Puiseux germs gj such that (xgj(x))|x=0 = 0. The following are

equivalent:

1. For all j′ such that
hj′(x)

x

∣

∣

∣

x=0
= ∞ it holds that

∑

j | hj=hj′
gj ≡ 0.

2. For all m ≥ 1,
P

j∈J gj(x)hj(x)m

xm−1

∣

∣

∣

x=0
= 0.

3. For all (m, ℓ) with m > ℓ ≥ 0, (
∑

j∈J gj(x)hj(x)
m)(ℓ)

∣

∣

∣

x=0
= 0

4. For all but finitely many m ≥ 1,
P

j∈J gj(x)hj(x)m

xm−1

∣

∣

∣

x=0
= 0.

5. For all but finitely many (m, ℓ) with m > ℓ ≥ 0, (
∑

j∈J gj(x)hj(x)
m)(ℓ)

∣

∣

∣

x=0
= 0

Proof: It clearly holds that 2 ⇐⇒ 3 =⇒ 4 ⇐⇒ 5. Theorem A.1 gives that 4

=⇒ 1. We point out that

(A.20)

∑

j∈J gj(x)hj(x)
m

xm−1
=
∑

j∈J

(xgj(x))

(

hj(x)

x

)m

.

With this one can see that 1 =⇒ 2.

�

We make a couple of remarks here. When we are dealing with associate symmetric

families, then
∑

j∈J gj(x)hj(x)
m is a (single-valued) meromorphic function for all m.
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When dealing with general Laurent-Puiseux families, conditions 2 and 4 are more

natural and simpler to handle than conditions 3 and 5.

However in some applications the sums
∑

j∈J gj(x)hj(x)
m are known in advance to

be holomorphic. In this case verification of 3 and 5 are more computationally direct.

For they can be interpreted as evaluation at x = 0 in the sense of holomorphic germs.

In contrast, conditions 2 and 4 would still require evaluation of
P

j∈J gj(x)hj(x)m

xm−1 in the

sense of Laurent-Puiseux germs, which necessitates an accompanying holomorphicity

test.

The next two theorems are applications of Theorem A.1 and Theorem A.3. But

first we wish to ensure the meaning of some terminology. As mentioned previously

the graph of a Laurent-Puiseux germ gives a variety in ∆r×Ĉ, for some appropriately

small r. Also we can think of the line {x = 0} as its projective version in ∆r × Ĉ.

In this thinking meromorphic germs yield graphs which intersect the line {x = 0} at

∞, though they would not otherwise intersect if we were looking only in C2. We will

refer to the projective line {x = 0} to distinguish that we mean the line {x = 0} in

∆r × Ĉ.

Also recall the notion of non-tangential contact. In this context, we say that a

variety intersects a line with non-tangential contact if at the points of intersections,

the tangent cone of the variety trivially intersects the tangent plane of the line. (We

previously gave the notion of non-tangential contact in Chapter V.)

Theorem A.4. Let {hj}j∈J be a finite distinct family of Laurent-Puiseux germs

about x = 0 tagged with integer multiplicities µj.

The following are equivalent:

1. The graphs of germs tagged with non-zero multiplicities from the family of germs

{hj}j∈J intersect the projective line {x = 0} at most at 0 with non-tangential
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contact.

2. ∀j such that
hj(x)

x

∣

∣

∣

x=0
= ∞, µj = 0

3. For all m ≥ 1,
P

j∈J µjhj(x)m

xm−1

∣

∣

∣

x=0
= 0.

4. For all (m, ℓ) with m > ℓ ≥ 0, (
∑

j µjhj(x)
m)(ℓ)

∣

∣

∣

x=0
= 0

5. For all but finitely many m ≥ 1,
P

j∈J µjhj(x)m

xm−1

∣

∣

∣

x=0
= 0.

6. For all but finitely many (m, ℓ) with m > ℓ ≥ 0, (
∑

j µjhj(x)
m)(ℓ)

∣

∣

∣

x=0
= 0.

Proof: Condition 1 is equivalent to ∀j ∈ J , µj = 0 or hj is O(x) as x → 0. This

is equivalent to 2. To complete the proof, Theorem A.3 implies that 2, 3, 4, 5, and

6 are all equivalent.

�

Theorem A.5. Let {hj}j∈J be a finite distinct family of Laurent-Puiseux germs

about x = 0 with associated multiplicities µj. Let a1, a2, . . . , an be distinct points in

C.

The following are equivalent:

1. The graphs of germs tagged with non-zero multiplicity from the family of germs

{hj}j∈J only intersect the projective line {x = 0} at most at a1, a2, . . . , an with

non-tangential contact.

2. ∀j such that
hj(x)−ak

x

∣

∣

∣

x=0
= ∞ for all k, µj = 0

3. ∀j such that
Qn

k=1(hj(x)−ak)

x

∣

∣

∣

x=0
= ∞, µj = 0

4. For all (m1, m2, . . . , mn) with mk ≥ 1 for all k,
P

j µj

Qn
k=1(hj(x)−ak)mk

xm−1

∣

∣

∣

x=0
= 0, where m = min{m1, m2, . . . , mn}.
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5. For all (m1, m2, . . . , mn, ℓ) with mk > ℓ ≥ 0 for all k,

(
∑

j µj

∏n
k=1(hj(x) − ak)

mk)(ℓ)
∣

∣

∣

x=0
= 0

6. For all k′,m,ℓ with m > ℓ ≥ 0 and 0 ≤ k′ ≤ n− 1,

(
∑

j µj

∏n
k=1(hj(x) − ak)

mk)(ℓ)
∣

∣

∣

x=0
= 0, where mk =











m+ 1 if k ≤ k′

m if k > k′
.

7. For all but finitely many (m1, m2, . . . , mn) with mk ≥ 1 for all k,
P

j µj

Qn
k=1(hj(x)−ak)mk

xm−1

∣

∣

∣

x=0
= 0, where m = min{m1, m2, . . . , mn}.

8. For all but finitely many (m1, m2, . . . , mn, ℓ) with mk > ℓ ≥ 0 for all k,

(
∑

j µj

∏n
k=1(hj(x) − ak)

mk)(ℓ)
∣

∣

∣

x=0
= 0

9. For all but finitely many k′,m,ℓ with m > ℓ ≥ 0 and 0 ≤ k′ ≤ n− 1,

(
∑

j µj

∏n
k=1(hj(x) − ak)

mk)(ℓ)
∣

∣

∣

x=0
= 0, where mk =











m+ 1 if k ≤ k′

m if k > k′
.

Proof: Condition 1 is equivalent to ∀j ∈ J , µj = 0 or hj − ak is O(x) as x → 0

for some k. This is equivalent to condition 2. And as the ak are distinct, this is

also equivalent to ∀j ∈ J , µj = 0 or
∏n

k=1(hj(x) − ak) is O(x) as x → 0. This is

equivalent to 3.

The following set of implications are clear.

(4) ⇐⇒ (5) =⇒ (6)

⇓ ⇓ ⇓

(7) ⇐⇒ (8) =⇒ (9)

We remark that 6 =⇒ 5 can be shown via direct algebraic manipulation, and

similarly so for 9 =⇒ 8. However such implications are not needed as this proof

concludes by showing 9 =⇒ 3 =⇒ 4.
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Consider the family of Laurent-Puiseux germs {
∏n

k=1(hj(x) − ak)}j∈J tagged

with Laurent-Puiseux germs µj

∏n
k=1(hj(x) − ak)

δk , for some non-negative integers

δ1, . . . δn. Applying Theorem A.3 (in particular using its implication 1 =⇒ 2) with

this new family proves 3 =⇒ 4 of the present theorem.

Now assume 9 holds and apply Theorem A.1 to this new family with δk = mk−m.

This shows that for all j such that
Qn

k=1(hj(x)−ak)

x

∣

∣

∣

x=0
= ∞, then

(A.21)
∑

j′∈J ′
j

µj′

k′

∏

k=1

(hj′(x) − ak) ≡ 0, for all k′, 0 ≤ k′ < n,

where J ′
j = {j′ |

∏n
k=1(hj′(x)−ak) =

∏n
k=1(hj(x)−ak)}. (If k′ = 0, then we interpret

the product in (A.21) as equaling 1.) By linear combinations of (A.21), we derive

that

(A.22)
∑

j′∈J ′
j

µj′hj′(x)
k′

≡ 0, for all k′, 0 ≤ k′ < n.

Note that |J ′
j| ≤ n. From the above equations we conclude that µj′ = 0 for all

j′ ∈ Jj, and so for j′ = j in particular. Thus condition 3 follows.

�



APPENDIX B

Formulas for pk,ℓ

In this section we’ll always assume that

(B.1) (Pi+1)ξ = µPi − (Pi)η, for 0 ≤ i ≤ N , (P0)ξ = 0,

where in any context N is chosen large enough so that we assume that all equations

hold that pertain to any Pi being used.

Recall U is the algebra of formal differential (with respect to ξ and η) expressions

of µξ = Dξµ. By Lemma VIII.1 we know there exist ρk,ℓ,i,j ∈ U, for 0 ≤ j ≤ i < k < ℓ

such that

(B.2) Dℓ
ξPk =

k−1
∑

i=0

i
∑

j=0

ρk,ℓ,i,jD
j
ξPi

for ℓ > k ≤ 0. The purpose of this section is demonstrate technical recurrence

relations with which ρk,ℓ,i,j can be calculated.

The equations and derivations will be somewhat simpler if we define the ρk,ℓ,i,j on

a broader set of (k, ℓ, i, j). We extend these definitions via a sequence of successive,

natural-looking extensions. For one we will define ρk,ℓ,i,j to be defined as 0, whenever

j < 0, i < j, or i ≥ k, that is whenever 0 ≤ j ≤ i < k doesn’t hold. So, for 0 ≤ k < ℓ,

we can broaden (B.2) to the representation

(B.3) Dℓ
ξPk =

∞
∑

i=0

i
∑

j=0

ρk,ℓ,i,jD
j
ξPi,
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or even

(B.4) Dℓ
ξPk =

∑

i

∑

j

ρk,ℓ,i,jD
j
ξPi.

Secondly note the above equation still is suitable when 0 ≤ ℓ ≤ k, namely by setting

ρk,ℓ,i,j to be 1 if and only if i = k and j = ℓ and 0 otherwise. Thirdly we define

ρk,ℓ,i,j to be 0 if k < 0 or ℓ < 0. Thus ρk,ℓ,i,j will be defined for all choices of integer

four-tuples (k, ℓ, i, j).

Also as a matter of simplicity of notation and for unification of cases, we permit

summations of form
∑a−1

j=a as valid notation and to be simply interpreted as 0. We

also use the Kronecker delta, δp =











1 if p = 0

0 if p 6= 0

. (We also discuss these notational

items in Chapter VIII following Lemma VIII.1.) We now provide the following

definition for ρk,ℓ,i,j.

Theorem B.1. Equation (B.2) is satisfied by ρk,ℓ,i,j which can be well-defined ac-

cording to the recursive rule

(B.5) ρk,ℓ,i,j =
ℓ−2
∑

j1=k

(

ℓ− 1

j1

)

(Dℓ−1−j1
ξ µ)ρk−1,j1,i,j −

i
∑

j1=j+1

(

j1
j

)

(Dj1−j
ξ µ)ρk−1,ℓ−1,i,j1

+

(

ℓ− 1

j

)

(Dℓ−1−j
ξ µ)δk−1−i − (Dηρk−1,ℓ−1,i,j) + ρk−1,ℓ−1,i−1,j−1,

for 0 ≤ j ≤ i < k < ℓ, where we also understand the following base definitions for

ρk,ℓ,i,j.

• For k < 0 or ℓ < 0, ρk,ℓ,i,j = 0.

• For 0 ≤ ℓ ≤ k, ρk,ℓ,i,j = δk−iδℓ−j.

• For 0 ≤ k < ℓ and any of j < 0, i < j, or i ≥ k, ρk,ℓ,i,j = 0.
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Proof: First we show that the recursive rules constitute a well-defined definition.

Noting that ρk,ℓ,i,j will only recursively depend on other ρ of the form ρk−1,ℓ′,i′,j′, and

that for k = 0 the base definitions must apply, it holds inductively that ρk,ℓ,i,j for

k, ℓ ≥ 0 is well-defined.

Now it simply remains to demonstrate that this definition satisfies (B.2). With

aid from the identity in (8.3), and by copious manipulation of summations, this is

accomplished by the following calculation, for 0 < k < ℓ.

Dℓ
ξPk = Dℓ−1

ξ (µPk−1 −DηPk−1)

=

ℓ−2
∑

j1=k

[(

ℓ− 1

j1

)

(Dℓ−1−j1
ξ µ)(Dj1

ξ Pk−1)

]

+

k−1
∑

j1=0

[(

ℓ− 1

j1

)

(Dℓ−1−j1
ξ µ)(Dj1

ξ Pk−1)

]

+ (µ−Dη)(D
ℓ−1
ξ Pk−1)

=
k−2
∑

i=0

i
∑

j=0

[

ℓ−2
∑

j1=k

(

ℓ− 1

j1

)

(Dℓ−1−j1
ξ µ)ρk−1,j1,i,j(D

j
ξPi)

]

+

k−1
∑

i=0

i
∑

j=0

[

δk−1−i

(

ℓ− 1

j

)

(Dℓ−1−j
ξ µ)(Dj

ξPi)

]

−
k−2
∑

i=0

i
∑

j=0

[

(Dηρk−1,ℓ−1,i,j)(D
j
ξPi)

]

+

k−2
∑

i=0

i
∑

j1=0

[

ρk−1,ℓ−1,i,j1

(

(µ−Dη)D
j1
ξ Pi

)]

=
k−1
∑

i=0

i
∑

j=0

[(

ℓ−2
∑

j1=k

(

ℓ− 1

j1

)

(Dℓ−1−j1
ξ µ)ρk−1,j1,i,j

+δk−1−i

(

ℓ− 1

j

)

(Dℓ−1−j
ξ µ) − (Dηρk−1,ℓ−1,i,j)

)

Dj
ξPi

]

+

k−2
∑

i=0

i
∑

j1=0

[

ρk−1,ℓ−1,i,j1

(

Dj1+1
ξ Pi+1 −

j1−1
∑

j=0

(

j1
j

)

(Dj1−j
ξ µ)(Dj

ξPi)

)]
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=

k−1
∑

i=0

i
∑

j=0

[(

ρk,ℓ,i,j

+
i
∑

j1=j+1

(

j1
j

)

(Dj1−j
ξ µ)ρk−1,ℓ−1,i,j1 − ρk−1,ℓ−1,i−1,j−1

)

Dj
ξPi

]

+
k−1
∑

i=1

i
∑

j1=1

[

ρk−1,ℓ−1,i−1,j1−1D
j1
ξ Pi

]

−
k−2
∑

i=0

i−1
∑

j=0

[(

i
∑

j1=j+1

ρk−1,ℓ−1,i,j1

(

j1
j

)

(Dj1−j
ξ µ)

)

Dj
ξPi

]

(B.6) =
k−1
∑

i=0

i
∑

j=0

[

ρk,ℓ,i,jD
j
ξPi

]

�

The above theorem is essentially a result of pursuing the proof of Lemma VIII.1

in an computational, rather than simply an existential, fashion. However this does

not mean that the rules and definitions so derived are the simplest or most efficient.

One helpful reduction results from the following identity.

Theorem B.2. For 0 ≤ j ≤ i < k < ℓ,

(B.7) ρk,ℓ,i,j =

(

ℓ

j

)

ρk−j,ℓ−j,i−j,0.

Proof: We proceed by induction on k − i. First consider the case k = i+ 1. This

implies that several of terms in (B.5) will vanish and thus

(B.8) ρi+1,ℓ,i,j =

(

ℓ− 1

j

)

(Dℓ−1−j
ξ µ) + ρi,ℓ−1,i−1,j−1.

Note that the above equation can be applied to it’s rightmost term. So by inductively

applying this equation j + 1 times we get that

(B.9) ρi+1,ℓ,i,j =

j
∑

j2=0

(

ℓ− j2 − 1

j − j2

)

(Dℓ−1−j
ξ µ) =

(

ℓ

j

)

Dℓ−1−j
ξ µ
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Note that this equation also implies that ρi+1−j,ℓ−j,i−j,0 = Dℓ−1−j
ξ µ. Thus (B.7) holds

in the case k − i = 1.

Now assume that we’ve proven (B.7) whenever k − i < m where m ≥ 2. Now

assume that k − i = m. Then (B.5) yields

(B.10) ρk,ℓ,i,j =

ℓ−2
∑

j1=k

(

ℓ− 1

j1

)

(Dℓ−1−j1
ξ µ)ρk−1,j1,i,j −

i
∑

j1=j+1

(

j1
j

)

(Dj1−j
ξ µ)ρk−1,ℓ−1,i,j1

− (Dηρk−1,ℓ−1,i,j) + ρk−1,ℓ−1,i−1,j−1,

Since (k − 1) − (i − 1) = m, we can re-apply this equation to the rightmost term.

Applying this equation inductively j + 1 times yields that

(B.11) ρk,ℓ,i,j =

j
∑

j2=0

{

ℓ−j2−2
∑

j1=k−j2

[(

ℓ− j2 − 1

j1

)

(Dℓ−j2−1−j1
ξ µ)ρk−j2−1,j1,i−j2,j−j2

]

−

i−j2
∑

j1=j−j2+1

[(

j1
j − j2

)

(Dj1−j+j2
ξ µ)ρk−j2−1,ℓ−j2−1,i−j2,j1

]

−Dηρk−j2−1,ℓ−j2−1,i−j2,j−j2

}

Now our inductive hypothesis applies to all the terms above. Then applying (B.7)

to above yields that

ρk,ℓ,i,j =

j
∑

j2=0

{

ℓ−2
∑

j1=k

[(

ℓ− j2 − 1

j1 − j2

)(

j1 − j2
j − j2

)

(Dℓ−1−j1
ξ µ)ρk−j−1,j1−j,i−j,0

]

−
i
∑

j1=j+1

[(

j1 − j2
j − j2

)(

ℓ− j2 − 1

j1 − j2

)

(Dj1−j
ξ µ)ρk−j1−1,ℓ−j1−1,i−j1,0

]

−

(

ℓ− j2 − 1

j − j2

)

Dηρk−j−1,ℓ−j−1,i−j,0

}
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=

j
∑

j2=0

(

ℓ− j2 − 1

j − j2

)

{

ℓ−2
∑

j1=k

[(

ℓ− j − 1

j1 − j

)

(Dℓ−1−j1
ξ µ)ρk−j−1,j1−j,i−j,0

]

−
i
∑

j1=j+1

[(

ℓ− j − 1

j1 − j

)

(Dj1−j
ξ µ)ρk−j1−1,ℓ−j1−1,i−j1,0

]

−Dηρk−j−1,ℓ−j−1,i−j,0

}

=

(

ℓ

j

)

{

ℓ−j−2
∑

j1=k−j

[(

ℓ− j − 1

j1

)

(Dℓ−j−1−j1
ξ µ)ρk−j−1,j1,i−j,0

]

−

i−j
∑

j1=1

[

(Dj1
ξ µ)ρk−j−1,ℓ−j−1,i−j,j1

]

−Dηρk−j−1,ℓ−j−1,i−j,0

}

(B.12) =

(

ℓ

j

)

ρk−j,ℓ−j,i−j,0

�

Define ψk,ℓ,i = ρk,ℓ,i,0. So by Theorem B.2, we only need be concerned with

defining ψk,ℓ,i for 0 ≤ i < k < ℓ. Using (B.5) and (B.7) then ψk,ℓ,i could be defined,

for 0 ≤ i < k < ℓ, by the recursive rule

(B.13) ψk,ℓ,i =
ℓ−2
∑

j1=k

[(

ℓ− 1

j1

)

(Dℓ−1−j1
ξ µ)ψk−1,j1,i

]

−
i
∑

j1=1

[(

ℓ− 1

j1

)

(Dj1
ξ µ)ψk−1−j1,ℓ−1−j1,i−j1

]

+ (Dℓ−1
ξ µ)δk−1−i − (Dηψk−1,ℓ−1,i),

and the following definitions, (the third of which serves as a base for the above

recursive rule)

• For k < 0 or ℓ < 0, ψk,ℓ,i = 0.

• For 0 ≤ ℓ ≤ k, ψk,ℓ,i = δk−iδℓ.

• For 0 ≤ k < ℓ and any of i < 0 or i ≥ k, ψk,ℓ,i = 0.
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In Chapter VIII we only have need to know ρk,k+1,i,j for 0 ≤ j ≤ i < k and thus

ψk,k+1,i for 0 ≤ i < k. The recursive rule restricted to this case is simply

(B.14) ψk,k+1,i

= −
i
∑

j1=1

[(

k

j1

)

(Dj1
ξ µ)ψk−1−j1,k−j1,i−j1

]

− (Dηψk−1,k,i) + (Dk
ξµ)δk−1−i.

This gives a suitable recursive definition when coupled with the base definition

ψk,k+1,i = 0 for i ≥ k.

An alternate recursive definition is this case is to define ψk,k+1,k−1 = Dk
ξµ, for

k ≥ 1, and to recursively define

(B.15) ψk,k+1,i = −
i
∑

j1=1

[(

k

j1

)

(Dj1
ξ µ)ψk−1−j1,k−j1,i−j1

]

− (Dηψk−1,k,i),

for 0 ≤ i < k − 1.



APPENDIX C

Linear Dependence of Analytic Functions in Several

Variables

The study of linear dependence is a point of general interest. We will look at the

specific case of analytic functions in several variables. The case of analytic functions

in two variables holds some application in this thesis.

Let Ω be a domain in Cm, for which we use coordinates x1, x2, . . . , xm. Let

f1, f2, . . . , fn be functions defined on Ω. The functions f1, f2, . . . , fn are linearly

dependent over C if and only exists constants c1, c2, . . . , cn, not all zero, in C such

that
∑m

j cjfj = 0. It is a reasonable question to ask how one determines whether

such a set of analytic functions is linear dependent or not.

When m = 1, a concise answer is that linear dependence is equivalent to the

Wronskian identically vanishing. One treatment is in the century old survey of

Bôcher [3] (particularly Section 4). An identically vanishing Wronskian is only a

necessary condition when analyticity is not assumed. Results in the non-analytic case

typically involve adding conditions to yield sufficiency. Work in this case was initiated

by Peano and continued by Bôcher [4], Curtiss [6], Chaundy [5], and Wolsson [29].

Henceforth we restrict our focus to the analytic case. So we suppose our functions

f1, f2, . . . , fn to be analytic.

For general m, a condition equivalent to linear dependence is the vanishing of all
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generalized Wronskians (which we will later define). Roth presents this criteria for

polynomials in [23]. Generalized Wronskians were earlier used by Siegel [25]. An

earlier statement on linear dependence with multiple variables was given, without

proof, by Kellogg in 1912 [19]. (For a view concerning the non-analytic case see

Wolsson [30].)

We present here a new criteria, though independently created for its application

in this work, which may be expressed as a sharper version of the condition stem-

ming from Roth’s. In particular the identical vanishing of a sharply chosen subset of

generalized Wronskians provides a sufficient condition for linear dependence. This

specifically chosen generalized Wronskians correlate to generalizations of Young dia-

grams for general dimension. We will state both the generalized Wronskian criteria

and our sharpened result.

We use the following multi-index notation. Define Tm to be the set of m-tuples

of non-negative integers. Let α = {α1, α2, . . . , αm} ∈ Tm. Let |α| =
∑m

j αj ,

xα = xα1
1 x

α2
2 · · ·xαm

m , and Dα = Dα1
x1
Dα2

x2
· · ·Dαm

xm
. Let φ = [f1, f2, . . . , fn]. Let

A = {a1, a2, . . . , ak} ⊂ (Tm)k. Define

(C.1) Mφ[A] =





















Da1f1 Da1f2 · · · Da1fn

Da2f1 Da2f2 · · · Da2fn

...
...

...

Dakf1 Dakf2 · · · Dakfn





















=





















Da1φ

Da2φ

...

Dakφ





















.

ForA of order n, defineWφ[A] = det(Mφ[A]). IfA can be expressed as {a1, a2, . . . , an}

such that ∀j |aj| ≤ j−1, then we call Wφ[A] a generalized Wronskian (of the function

set {f1, f2, . . . , fn}). We state the generalized Wronskian method for determining lin-

ear dependence.

Theorem C.1. The function set {f1, f2, . . . , fn} is linear dependent over C if and
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only if all of its generalized Wronskians vanish.

Proof: If the function set {f1, f2, . . . , fn} is linear dependent over C, then there

exist complex numbers c1, c2, . . . , cn, not all zero, such that
∑

j cjfj = 0. By differ-

entiation, it holds that for any a ∈ Tm, that
∑

j cjD
afj = 0. Thus [c1 c2 · · · cn]T

is a non-trivial null vector to Mφ(A) for all A, thus all the generalized Wronskians

must vanish.

For the converse, see [24] pages 80-83, where the sufficiency of the vanishing of

the generalized Wronskians for the linear dependence over R of rational functions

with real coefficients is given. That proof, modified to linear dependence over C of

meromorphic functions, will give the converse.

�

We lexicographically order T = Tm, denoting α � β if α lexicographically precedes

or equals β. We also define a partial ordering ≤ on T , by the rule (α1, α2, . . . , αm) ≤

(β1, β2, . . . , βm) if and only if αj ≤ βj for all j. Note α ≤ β implies α � β.

We call a set A ⊂ T Youngish if a ∈ A and b ≤ a implies b ∈ A. For m = 2,

finite Youngish sets correspond to Young diagrams. If A is Youngish then Wφ[A] is a

generalized Wronskian. Now we state the following sharper version of Theorem C.1.

Theorem C.2. The function set {f1, f2, . . . , fn} is linear dependent over C if and

only if the generalized Wronskians Wφ[A] vanish for all Youngish sets A ⊂ Tm of

order n.

To facilitate the proof we establish some definitions and lemmas. Let O = Om

denote the ring of germs of analytic functions in variables x1, x2, . . . , xm about the

origin. We define the field M = ff(O), the fraction field of O. Let M be a 1 × n
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matrix with entries in O. We may consider M as a M-linear map from Mn to M.

For α ∈ T , define Mα = Dα(M), where we treat differentiation entry-wise on M .

Let A be a subset of T . Define NA =
⋂

α∈A kerMα ⊆ Mn.

Lemma C.3. For a given M there exists a Youngish set Y ⊂ T of order at most n

such that NY = NT .

Proof: Define Sα = {β ∈ T | β ≺ α}. Let Y = {α ∈ T | NSα
6= NSα∪{α}} =

{α ∈ T | NSα
6⊆ kerMα}. We claim this set is Youngish. Assume not, then there

exists a γ ∈ Y and β /∈ Y such that β < γ. Let δ denote the difference between γ

and β (a.k.a. γ − β). Now β /∈ Y implies NSβ
⊆ kerMβ. This implies that there

exists b 6= 0 and aα, for α ∈ Sβ , all in O such that bMβ =
∑

α∈Sβ
aαMα. Applying

Dδ to this equation yields that bMγ is an O-linear combination of Mα, α ∈ Sγ. This

implies NSγ
⊆ kerMγ , which contradicts γ being in Y . Thus Y is Youngish.

Now NT ⊆ NY is clear. So for contradiction assume NY 6⊆ NT . As T is well-

ordered, let β be the least element in T such that NY 6⊆ NSβ∪{β}. So NY ⊆

⋂

α≺β NSα∪{α} = NSβ
. If β /∈ Y then NY ⊆ NSβ

= NSβ∪{β}. If β ∈ Y , then

NY ⊆ NSβ
∩ kerMβ = NSβ∪{β}. Either way forms a contradiction, thus NY = NT .

Now suppose for sake of contradiction that Y contains n + 1 or more elements.

Let α1, α2, . . . , αn+1 be elements of Y such that α1 ≺ α2 ≺ . . . ≺ αn+1. Then note

(C.2) Mn ⊃
⋂

α�α1

kerMα ⊃
⋂

α�α2

kerMα ⊃ . . . ⊃
⋂

α�αn+1

kerMα

is a strictly decreasing sequence of vector spaces, the last of which has codimension

at least n + 1 within Mn, which yields the desired contradiction.

�

Proof (of Theorem C.2): The identical vanishing of the generalized Wronskians
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associated with Youngish sets is clearly necessary, so we only need to establish suf-

ficiency.

Let M = φ and let Y be a Youngish set of order at most n such that NT = NY ,

which exists by Lemma C.3. A generalized Wronskian Wφ[A] identically vanishes if

and only if NA 6= {0}. So if Y is of order n then it holds by assumption that Wφ[Y ] =

0 and thus NT is non-trivial. If Y has order less than n, then it automatically

holds that NT is non-trivial. Independent of the previous two cases, it follows that

NA 6= {0} for all subsets A of T . In particular, this implies all the generalized

Wronskians vanish and so by Theorem C.1, linear dependence follows.

�

This version of determining linear dependence is sharper than the previous result

as we only need to check a subset of the generalized Wronskians. This choice of

subset is in fact sharp, as we will see by the following.

Let A = {a1, a2, . . . , an} be a finite Youngish set. For our function set, let φ =

{xa1 , xa2 , . . . , xan}. As A is Youngish, for any b = (β1, β2, . . . , βm) 6∈ A and a =

(α1, α2, . . . , αm) ∈ A there exists a j such that αj < βj , so Db(xa) ≡ 0. Thus

Dbφ ≡ [0 0 . . . 0]. Thus for any B ⊂ Nm of order n, other than A, Wφ[B] must

identically vanish. (In contrast, Wφ[A] will equal a nonzero constant.) The function

set φ is linearly independent over C. So any subset of generalized Wronskians whose

vanishing is sufficient to determine linear dependence must include Wφ[A], where A

is any Youngish set of order n.

Now if we examine this result in terms of computability, the construction of the

Youngish set in Lemma C.3 provides an algorithmic way to check for linear de-

pendence. As demonstrated, linear dependence is tantamount to the set NT being

non-trivial. In fact we can compute the Y constructed in Lemma C.3 and NT = NY ,
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by the following algorithm. New notation: let RA = spanM{Mα}α∈A. So NA = R⊥
A.

1. Initialize α to (0, 0, . . . , 0), A to ∅, and RA to {0}.

2. If Mα /∈ RA, then set A to A ∪ {α} and RA to RA ⊕M Mα.

3. Set β to be the least element (according to the total ordering ≺) greater than

α, such that A ∪ {β} is “Youngish”. If no such β exists skip to step 5.

4. Set α to β and repeat starting at step 2.

5. Set Y to A and NY to R⊥
A. Calculation complete.
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ABSTRACT

Concerning Characterizations of Boundaries of Holomorphic 1-Chains within

Complex Surfaces

by

Ronald A. Walker

Chair: David Barrett

Let X be a complex manifold or an analytic variety and let γ be a closed, ori-

ented, C2 real 1-chain in X. We say γ is the boundary of an holomorphic 1-chain

within X if there is a holomorphic 1-chain V in X\ spt γ such that b[V ] = [γ], in

the sense of currents, and sptV ⋐ X. We produce a family of new characterizations

for boundaries of holomorphic 1-chains within CP2, related to a previous charac-

terization involving shockwaves. We show that some of these characterizations are

computationally accessible and may be tractably tested. By employing birational

maps, we further characterize the boundaries of holomorphic 1-chains within Ĉ × Ĉ

and C × Ĉ. By a separate approach, we produce a distinctly new vein of characteri-

zations for boundaries of holomorphic 1-chains within CP2 and C × Ĉ.


