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Abstract. We consider the notion of meromorphic Whitney multifunction

solutions to ffξ = fη , which yields an enhanced version of the Dolbeault

Henkin characterization of boundaries of holomorphic 1-chains within CP2.

By analyzing the equations describing meromorphic Whitney multifunction

solutions to ffξ = fη and by creating some generalizations of certain linear

dependence results, we show that a function G may be decomposed into a

sum of such solutions, modulo ξ-affine functions and with a selected bound

on the degree of such sum, if and only if Gξξ satisfies a finite set of explicitly

constructible partial differential equations.

1. Introduction

Dolbeault and Henkin introduced a characterization of boundaries of holomor-
phic 1-chains within CPn, with a subsequent expansion to a characterization of
boundaries of holomorphic p-chains within CPn [4], [5]. At the heart of their gen-
eral result, both in proof and in essence, is the case of boundaries of holomorphic
1-chains within CP2.

Roughly speaking, the Dolbeault Henkin characterization is expressed in terms
of the “holomorphic shockwave decomposability” of a particular integral function.
Specifically, a closed, oriented, C2 1-chain γ contained in C2 ⊂ CP2 bounds a
holomorphic 1-chain within CP2 if and only if there exists some point (ξ∗, η∗) in
Uγ := {(ξ, η) | spt γ ∩ {z2 = ξ + ηz1} = ∅} about which the function Gγ(ξ, η) :=
1

2πi

∫
γ
z1

d(z2−ηz1)
z2−ξ−ηz1

can be locally decomposed, modulo ξ-affine functions, into a Z-
linear combination of germs of holomorphic solutions to the partial differential
equation fη = ffξ [4], [5]. Work by Dinh extends this result to the case where γ is
a rectifiable 1-current whose support satisfies a condition called A1 [3].

In the proof of the above, one discovers that a multiset of germs of holomor-
phic solutions to fη = ffξ at (ξ∗, η∗) can be used to encode a local portion of a
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generic positive holomorphic 1-chain near the line z2 = ξ∗+η∗z1. However, positive
holomorphic 1-chains with local components that intersect the line z2 = ξ∗ + η∗z1

non-transversally or at infinity are examples that cannot be encoded by this ap-
proach. If γ bounds a holomorphic 1-chain within CP2, then Gγ is holomorphic
shockwave decomposable, in the sense of the above paragraph, about (ξ∗, η∗) for a
generic point (ξ∗, η∗) in Uγ , but not for every (ξ∗, η∗) in Uγ in general. So, with
the above type of shockwave decomposability, one must either concede to permit-
ting genericity in the choice of the point (ξ∗, η∗) or to only detecting holomorphic
1-chains bounded by γ that satisfy certain generic restrictions near z2 = ξ∗ + η∗z1.
(Such restrictions are generic among the collection of all holomorphic 1-chains.
However with (ξ∗, η∗) fixed, one can readily construct examples of γ that bound
holomorphic 1-chains, but none of which satisfy such a restriction.)

It would be ideal to have full freedom to fix the point (ξ∗, η∗) in Uγ while
allowing general holomorphic 1-chain behavior near the line z2 = ξ∗ + η∗z1. We
may accomplish this by using meromorphic Whitney multifunction solutions to fη =
ffξ instead of unramified holomorphic solutions. As we will show, meromorphic
Whitney multifunction solutions to fη = ffξ can be represented as the roots to a
ζ-polynomial P0(ξ, η)ζN −P1(ξ, η)ζn−1 + · · ·+(−1)NPN (ξ, η) where P0, P1, . . . , PN

satisfy the refined h.s.w. equations

(1.1) P0[(Pk+1)ξ + (Pk)η] = Pk[(P1)ξ + (P0)η], for 1 ≤ k ≤ N , and (P0)ξ = 0,

with the occurrence of PN+1 treated as 0. Also, one can prescribe a canonical way
to choose the functions P0, P1, . . . , PN , which we show at the end of Section 4.

Related to this, for N ≥ 0 we say that µ(ξ, η) satisfies condition (?N ) if there
exist P0, P1, . . . , PN satisfying

(1.2) (Pk+1)ξ + (Pk)η = µPk, for 0 ≤ k ≤ N , and (P0)ξ = 0.

with PN+1 is regarded as zero. (Notably, this implies that µξ = D2
ξ

(
P1
P0

)
.) The

Dolbeault Henkin characterization within CP2 can be adapted as follows.

Theorem 1.1. Let γ be a closed, rectifiable 1-current whose support is contained
in C2 ⊂ CP2 and satisfies condition A1. Let (ξ∗, η∗) ∈ Uγ . Then γ bounds a
holomorphic 1-chain with finite mass within CP2 if and only if there exist closed,
rectifiable 1-currents γ+ and γ−, with no identically oriented arc common to both,
such that γ = γ+ − γ− with µ+(ξ, η) := DξGγ+(ξ, η) and µ−(ξ, η) := DξGγ−(ξ, η)
satisfying condition (?N+) and (?N−), respectively, in a neighborhood of (ξ∗, η∗),
for some non-negative integers N+ and N−.

Remark: There exist γ+ and γ− satisfying this theorem for a fixed N+ and
N− if and only if γ bounds a holomorphic 1-chain with finite mass within CP2
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that has at most N+ positive intersections and N− negative intersections, counting
multiplicity, with the line z2 = ξ∗ + η∗z1.

It is natural to inquire about the practicality of determining when Gγ is shock-
wave decomposable. Towards this end, we examine condition (?N ). (The equations
in (1.2) have some intriguing features that may draw independent interest from
the vantage point of integrable systems.) As may be seen, µ satisfies condition
(?N ) if and only there exists a solution to a particular overdetermined system of
partial differential equations involving µ. We show that this is equivalent to µξ

satisfying a particular set of partial differential equations that depends on N . This
is expressed in Theorem 6.7, a special case of which is given below. (The following
employs some definitions that will be given in Section 3 and Section 6. For now we
simply remark that WTN ,ǓN

Y (MN ) is an modified form of a generalized Wronskian,
indexed by Young diagrams of size

(
N+2

2

)
denoted by Y , and that it is purely a

partial differential expression of µξ.)

Theorem 1.2. Let µ be a germ of a holomorphic function about a point (ξ∗, η∗),
and let N be a non-negative integer. The function µ satisfies condition (?N ) if and
only if WTN ,ǓN

Y (MN ) = 0 for each Young diagram Y of cardinality
(
N+2

2

)
.

We briefly note some consequences of these results. For one, consider the col-
lection of γ that bound a holomorphic 1-chain V such that V intersects the line
z2 = ξ∗ + η∗z1 only positively and with total degree at most N . As a consequence
of the previous theorems, this collection of γ can be characterized by a finite set of
explicit partial differential equations on D2

ξGγ .
Also, if γ is a closed, finite 1-chain γ with finitely many self-intersections, then

there are only finitely many potential ways that γ can be decomposed into γ+−γ−

with γ+ and γ− having no comman arcs. Let {γj} be a finite family of subcurves of
γ that generates all of the simple closed curves in γ. So we can characterize whether
such a γ bounds a holomorphic 1-chain V , with separately prescribed bounds on
the degree of positive and negative intersections between V and z2 = ξ∗ + η∗z1,
using a finite number of partial differential equations on {D2

ξGγj}.
In Section 2 we present some preliminaries and notation. In Section 3 we gen-

eralize a result originally regarding linear dependence into a broader differential
equation context. We introduce holomorphic and meromorphic Whitney multi-
function solutions to the shockwave equation fη = ffξ in Section 4, deriving the
relevant formulae there. In Section 5, we establish the ensuing extension of the Dol-
beault Henkin characterization of boundaries of holomorphic 1-chains within CP2.
We examine our extended notion of shockwave decomposability, yielding proofs of
Theorem 1.1 and Theorem 1.2, in Section 6 with some details relegated to the
appendix.
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2. Preliminaries and Auxiliary Results

2.1. Some Relevant Function Algebras and Definitions. Let mO denote the
sheaf of germs of holomorphic functions on Cm and let mM denote the sheaf of
germs of meromorphic functions on Cm. For our purposes, it makes sense to regard
C0 as a single isolated point and to treat 0O and 0M as the sheaf of complex
constants. For the time being we fix m ≥ 1 and omit the pre-subscript denotation.

For a domain Ω in Cm, O(Ω) = Γ(Ω,O) denotes the ring of holomorphic func-
tions on Ω. And for a non-empty, connected, compact set K in Cm, O(K) =
Γ(K,O) denotes the ring of germs of holomorphic functions on K. The field of
meromorphic functions on Ω and the field of germs of meromorphic functions on
K are denoted M(Ω) (= Γ(Ω,M)) and M(K) (= Γ(K,M)), respectively. On the
local level, it holds by definition that Mp equals the fraction field of Op, i.e. ff(Op).
If Ω, resp. K, is Stein, then this algebraic statement also holds in a more global
sense, namely M(Ω) = ff(O(Ω)), resp. M(K) = ff(O(K)) [15](Theorem 8.19).

For a point p ∈ Cm, the ring Op is a Noetherian, unique factorization domain
[9]. It also holds that O(K) is a Noetherian, unique factorization domain for a
broad range of compact sets K [7], [17], [2]. For instance, it is sufficient to let K
be a compact, semi-analytic, Stein set in Cm such that H2(K; Z) = 0; e.g. a closed
polydisk will do.

Let O′ = m−1O and M′ = m−1M. The sheaves O′ and M′ have natural,
respective inclusions in O and M. So we may define the sheaf M′O, which is
equivalent to the localization (O′\{0})−1O.

Let (~η, ξ) = (η1, η2, . . . , ηm−1, ηm = ξ) be the coordinates for Cm, and let (~η∗, ξ∗)
be a fixed point in Cm. We say that a non-empty, compact set K is Cauchy-viable
with respect to ξ = ξ∗ if each non-empty slice of the form K ∩ {~η = ~η0}, for
~η0 ∈ Cm−1, contains the point (~η0, ξ∗) and possesses a neighborhood basis of simply
connected domains. (If m = 1, then we simply mean that K contains ξ∗ and has a
neighborhood basis of simply connected domains.)

Assume that K is a non-empty, connected, Cauchy-viable, Stein, compact set,
and let K̃ = {~η ∈ Cm−1 | (~η, ξ∗) ∈ K}. Under this assumption, O′(K̃) and M′(K̃)
have natural, respective inclusions in O(K) andM(K). Also it holds thatM′O(K)
(= Γ(K,M′O)) can be identified with {g/h ∈M(K) | g ∈ O(K), h ∈ O′(K̃)\{0}},
based on arguments such as Theorem 8.19 and Lemma 8.5 of [15].

The following observations motivate the previous definitions and will be use-
ful later on. For f = g/h ∈ M′O(K), with g ∈ O(K) and h ∈ O′(K̃)\{0},∫ ξ

ξ∗
f(~η, ξ′) dξ′ = (

∫ ξ

ξ∗
g(~η, ξ′) dξ′)/h(~η) yields a well-defined element of M′O(K).

(This integral is not so well-behaved on general elements of M(K), as one may see
with examples such as 1/ξ.) Also if u ∈M(K) andDξu = f for some f ∈M′O(K),
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then ũ(~η) := u(~η, ξ∗) defines an element of M′(K̃), i.e. µ̃ 6≡ ∞, and u ∈M′O(K).
Furthermore, for any f ∈ M′O(K) and g ∈ M′(K̃), there is a unique solution
u ∈M′O(K) to the initial value problem Dξu = f and u|ξ=ξ∗ = g.

2.2. Matrix and Indexing Protocol. If M is a matrix with rows indexed by a
finite ordered set A and columns indexed by a finite ordered set B, we call M a
A × B matrix. For α ∈ A and β ∈ B, we use the notation Mβ

α to refer to the
entry row-referenced by α and column-referenced by β. (For matrices with one row
or one column, we may drop the trivial index from the notation.) For a A × B

matrix M and a B × C matrix L, the matrix product ML satisfies the equation
(ML)γ

α =
∑

β∈B M
β
αL

γ
β , for α ∈ A, γ ∈ C. For A × A matrices, the notions of

triangularity and strict triangularity can be defined. We say that M is lower (resp.
upper) triangular if Mα2

α1
= 0 whenever α1 ≺ α2 (resp. α2 ≺ α1), and we say that

M is strictly lower (resp. upper) triangular if Mα2
α1

= 0 whenever α1 � α2 (resp.
α2 � α1).

3. A Generalization of Certain Results on Linear Dependence

In this section, our interest centers on the space of the type

(3.1) kerφ ∩
m⋂

j=1

ker(Dηj
−Aj),

where φ is a row matrix and Aj are square matrices, both with entries being func-
tions of η1, . . . , ηm, subject to certain requirements and relationships. In other
words, this is the space of mutual solutions to a linear equation and certain sys-
tems of ordinary differential equations. Among other things, we develop a means
for determining when such a space is non-trivial.

While the results in this section are much more general, they are specifically
motivated by the space kerMN ∩ ker(Dξ −AN )∩ ker(Dη −BN ) that is introduced
in Subsection 6.1. Also, this section is a generalization of the results and techniques
presented in an article on linear dependence [19]. Note that the space of linear
relations among entries of a row matrix φ is simply kerφ ∩

⋂m
j=1 kerDηj

, which
corresponds to the special case where each Aj is zero in (3.1).

Let (~η, ξ) = (η1, . . . , ηm−1, ηm = ξ) denote coordinates for Cm. For the first
portion of this subsection, specifically Lemma 3.1 through Lemma 3.4, we assume
that K is a non-empty, connected, Stein, compact set in Cm and that K is Cauchy-
viable with respect to ξ = ξ∗. Let K̃ = {~η ∈ Cm−1 | (~η, ξ∗) ∈ K}.

Let A be a N ×N matrix with entries in M′O(K). Define T to be the operator
acting on 1×N matrices with entries in M(K) such that T (ψ) = Dξ(ψ)+ψA. For
f ∈M(K), T satisfies the Leibniz-like identity

(3.2) T (fψ) = fξψ + fT (ψ).
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Also, for a column vector ~v in M(K)N , it holds that

(3.3) Dξ(ψ~v) = T (ψ)~v + ψ(Dξ −A)~v.

Let {φα} denote some (possibly infinite) collection of 1×N matrices with entries
inM′O(K). Let N (ψ) = ∩∞j=0 kerT j(ψ) ⊆M(K)N , and let N = ∩αN (φα). Using
(3.3), we see that kerψ ∩ ker(Dξ −A) ⊆ kerT (ψ), and so

(3.4) ∩α kerφα ∩ ker(Dξ −A) = N ∩ ker(Dξ −A).

Now suppose that A = S−1LS for some N × N matrices S and L such that
S ∈ GLN (M′(K̃)) and L is strictly lower triangular with entries in M′O(K). One
useful property of N is the following.

Lemma 3.1.

(3.5) N = (N ∩ ker(Dξ −A))⊗M′(K̃) M(K).

Proof. By a change of variable it is sufficient to consider the case A = L. The
right-hand side of (3.5) is tautologically contained in N . For the reverse inclusion,
it suffices to show that N has a M(K) basis contained in ker(Dξ −A).

Let {~v1, ~v2, . . . , ~vk} be a M(K) basis for N . By reducing this basis “from the
top” we may assume that there exist `1 < `2 < · · · < `k such that for each j,
(~vj)`j

= 1 and (~vj)` = 0 for ` < `j .
Note that (Dξ − A) maps N to itself, as (3.3) shows that T j(φα)(Dξ − A)~v =

Dξ(T j(φα)~v)− T j+1(φα)~v. By the strict lower triangularity of A and the reduced
form of the basis, it holds that (Dξ−A)~vj ∈ spanM(K){~vj+1, . . . , ~vk}. In particular,
(Dξ−A)~vk = 0. So there exists a j ≤ k−1 and a t ≥ j+1 such that (Dξ−A)~vj′ = 0
for j + 1 ≤ j′ ≤ k and (Dξ −A)~vj ∈ spanM(K){~vt, . . . , ~vk}.

As (~vj)`j
= 1 and Dξ(~vj)` =

∑`−1
i=`j

Ai
`(~vj)i for `j < ` < `t, we may inductively

conclude that (~vj)` ∈ M′O(K) for ` < `t. Thus there exists a λ ∈ M′O(K)
such that λξ =

∑`t−1
i=`j

Ai
`t

(~vj)i. Let ~w = ~vj + (λ − (~vj)`t
)~vt, and observe that

((Dξ −A)~w)`t
= 0. In replacing ~vj with ~w, we preserve {~v1, . . . , ~vk} as a M(K)

basis of N , yet (Dξ −A)~vj ∈ spanM(K){~vt+1, . . . , ~vk} (or (Dξ −A)~vj = 0 if t = k).
By induction in t and j, we produce a M(K) basis for N contained in ker(Dξ−A).

�

Let R be the fundamental matrix of the vector differential equation (Dξ−A)~v = 0
normalized at ξ = ξ∗, i.e. R is the unique solution to the matrix Cauchy problem
Rξ = AR and R|ξ=ξ∗ = Id [1](pp. 1-2). So, for a column vector ~w in M′(K̃)N ,
~v = R~w gives the unique solution to the vector differential equation (Dξ −A)~v = 0
with Cauchy data ~v|ξ=ξ∗ = ~w. Thus ~w 7→ R~w is a M′(K̃) isomorphism between
M′(K̃)N and ker(Dξ −A) ⊆M(K)N with the inverse being the map ~v 7→ ~v|ξ=ξ∗ .
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Lemma 3.2.

(3.6)

R

⋂
α

⋂
j≥0

ker
(
(T j(φα))|ξ=ξ∗

)
∩M′(K̃)N

 =
⋂
α

⋂
j≥0

ker(T j(φα)) ∩ ker(Dξ −A)

Proof. Let ~w ∈M′(K̃)N . Since
(
T j(φα)R~w

)∣∣
ξ=ξ∗

=
(
T j(φα)

)∣∣
ξ=ξ∗

~w andDξ(T j(φα)R~w) =

T j+1(φα)R~w, it follows that
(
Dk

ξ

(
T j(φα)R~w

))∣∣∣
ξ=ξ∗

=
(
T j+k(φα)

)∣∣
ξ=ξ∗

~w for

j, k ≥ 0. From this, the forward inclusion follows.
The reverse inclusion follows by simply employing the inverse of R and by using

the equation
(
T j(φα)

)∣∣
ξ=ξ∗

~w =
(
T j(φα)R~w

)∣∣
ξ=ξ∗

.
�

Let B be a N ×N matrix with entries in M′O(K), and let B̃ = B|ξ=ξ∗ . Define
the operator U by U(ψ) = Dηm−1ψ + ψB, which satisfies properties analogous to
(3.2) and (3.3). Also suppose that there exist indices α1, . . . , αq and N×1 matrices
Q1, . . . , Qq with entries in M(K) such that

(3.7) [Dξ −A,Dηm−1 −B] =
q∑

i=1

Qiφαi
.

Lemma 3.3.

(3.8) R

⋂
α

⋂
j≥0

ker
((
T j(φα)

)∣∣
ξ=ξ∗

)
∩ ker(Dηm−1 − B̃) ∩ (M′(K̃))N


=
⋂
α

⋂
j≥0

kerT j(φα) ∩ ker(Dηm−1 −B) ∩ ker(Dξ −A)

Proof. Let ~w ∈M′(K̃)N . By Lemma 3.2 and since (Dηm−1−B̃)~w =
(
(Dηm−1 −B)R~w

)∣∣
ξ=ξ∗

,
it follows that the right-hand side is contained in the left-hand side.

To show the forward inclusion, let R~w be a member of the left-hand side. From
Lemma 3.2, it follows that φαR~w = 0 for all α. Thus

(3.9) (Dξ −A)(Dηm−1 −B)R~w = (Dηm−1 −B)(Dξ −A)R~w +
q∑

i=1

QiφαiR~w = 0.

Since (Dηm−1 −B)R~w ∈ ker(Dξ −A), we may use the inverse of R to see that

(3.10) (Dηm−1 −B)R~w = R
(
(Dηm−1 −B)R~w

)∣∣
ξ=ξ∗

= R(Dηm−1 − B̃)~w = 0.

�

For a N × 1 matrix ψ with entries in M(K), one may easily calculate that

(3.11) U(T (ψ))− T (U(ψ)) = ψ[Dξ −A,Dηm−1 −B] =
q∑

i=1

(ψQi)φαi
.

A generalization of this is the following.
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Lemma 3.4. Let ψ be a N × 1 matrix ψ with entries in M(K), and let j, k ≥
1. Uk(T j(ψ)) − T j(Uk(ψ)) is contained in the M(K) span of terms of the form
T j′(Uk′(φαi)) (or Uk′(T j′(φαi))) with 1 ≤ i ≤ q, 0 ≤ j′ ≤ j−1, and 0 ≤ k′ ≤ k−1.

Proof. Equation (3.11) gives the lemma in the case j = k = 1.
Assume that the lemma holds for 1 ≤ j ≤ j0 and 1 ≤ k ≤ k0 for some j0, k0 ≥ 1.

Note that

(3.12) Uk0(T j0+1(ψ))− T j0+1(Uk0(ψ))

= (Uk0T − TUk0)(T j0(ψ)) + T ((Uk0T j0 − T j0Uk0)(ψ)),

and

(3.13) Uk0+1(T j0(ψ))− T j0(Uk0+1(ψ))

= (UT j0 − T j0U)(Uk0(ψ)) + U((Uk0T j0 − T j0Uk0)(ψ)),

Consider the right-hand side of (3.12). By the induction hypothesis, we see that
the first term is in the M(K) span of terms of the form Uk′(φαi) for 0 ≤ k′ ≤ k−1,
and, by also using (3.2), we see that the second term is in the M(K) span of terms
of the form T j′(Uk′(φα)) for 0 ≤ j′ ≤ j0 and 0 ≤ k′ ≤ k0 − 1.

Now consider the right-hand side of (3.13). Similar to before, the first term
is in the M(K) span of terms of the form T j′(φαi) for 0 ≤ j′ ≤ j0 − 1. The
second term, by way of (3.2) and a recursive, more protracted application of the
induction hypothesis, is in the M(K) span of terms of the form T j′(Uk′(φαi)) for
0 ≤ j′ ≤ j0 − 1 and 0 ≤ k′ ≤ k0.

In order to use the terms Uk′(T j′(φαi)) in place of T j′(Uk′(φαi)), simply apply
the established portion of the lemma with T and U interchanged.

�

For the remainder of this section, suppose that K is a compact Stein set contain-
ing (η∗1 , η

∗
2 , . . . , η

∗
m) such that Kj := {(η1, . . . , ηj) ∈ Cj | (η1, . . . , ηj , η

∗
j+1, . . . , η

∗
m) ∈

K} is Cauchy-viable with respect to ηj = η∗j for 1 ≤ j ≤ m.
For 0 ≤ j ≤ m − 1, define Ej to be restriction by ηj+1 = η∗j+1, . . . , ηm = η∗m.

(Define Em to be the identity operator.) Thus Ej is a well-defined map from

jMmO(K) to jM(Kj). We administer the action of Ej entry-wise when it is
applied to vectors or matrices.

For 1 ≤ j ≤ m, let Aj be a N × N matrix with entries in j−1MmO(K)
such that Ej(Aj) = S−1

j LjSj for some N × N matrices Sj and Lj with Sj ∈
GLN ( j−1M(Kj−1)) and Lj strictly lower triangular with entries in j−1M jO(Kj).
Define the operators Tj(ψ) = Dηjψ+ψAj . Let {φα} be a family of 1×N matrices
with entries in mO(K). Suppose that there exist indices α1, . . . , αq and N × 1 ma-
trices Qi,j,k with entries in mO(K) for 1 ≤ i ≤ q and 1 ≤ j, k ≤ m such that [Dηj −
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Aj , Dηk
−Ak] =

∑
iQi,j,kφαi . Let tN (ψ) =

⋂
j1,...,jt≥0 kerEt(T

jt

t (· · ·T j2
2 (T j1

1 (ψ)) · · · ))∩
tM(Kt)N .

Theorem 3.5. With the definitions and assumptions given in the immediately
preceding paragraphs, it holds that

(3.14)
⋂
α

mN (φα) =

⋂
α

kerφα ∩
m⋂

j=1

ker(Dηj
−Aj)

⊗C mM(K)

Proof. We will proceed using induction. Assume that

(3.15)
⋂
α

tN (Et(φα)) =

⋂
α

kerEt(φα) ∩
t⋂

j=1

ker(Dηj − Et(Aj))

⊗C tM(Kt),

with 1 ≤ t < m. (The base case t = 1 is an immediate consequence of Lemma 3.1
and equation (3.4).)

Let ξ = ηt+1. Let R denote the fundamental matrix for (Dξ − Et+1(At+1))~v
normalized at ξ = ξ∗. Using Lemma 3.1, Lemma 3.2, and Lemma 3.4, it holds that

(3.16) ∩α t+1N (Et+1(φα))

= (∩α t+1N (Et+1(φα)) ∩ ker(Dξ − Et+1(At+1)))⊗ tM(Kt) t+1M(Kt+1)

= R
(
∩α ∩j≥0 tN (Et(T

j
t+1(φα)))

)
⊗

tM(Kt) t+1M(Kt+1).

By applying the inductive hypothesis to the larger family {Et(T
j
t+1(φα))}α,j and

by Lemma 3.3 and equation (3.4), the above equals

(3.17) R
(
∩α ∩j≥0 ker(Et(T

j
t+1(φα))) ∩ ∩t

j=1 ker(Dηj
− Et(Aj)) ∩ tM(Kt)N

)
⊗C t+1M(Kt+1)

=
(
∩α kerEt+1(φα) ∩ ∩t+1

j=1 ker(Dηj − Et+1(Aj)) ∩ t+1M(Kt+1)N
)

⊗C t+1M(Kt+1)

By induction, (3.15) holds for t = m, thus the proof is complete.
�

We carried out the previous results for a general family of 1×N matrices {φα}
because it actually facilitates the proof of Theorem 3.5. However Theorem 3.5 in
the case where the family {φα} simply consists of a single 1 × N matrix φ is the
main item of interest in our present application.

Notably, Theorem 3.5 implies that kerφ∩
⋂m

j=1 ker(Dηj−Aj) is non-trivial if and
only if mN (φ) is non-trivial. While mN (φ) is defined as the common null space of
an infinite set of linear functionals dependent on φ, we will show via Theorem 3.6
that it can be calculated using only a finite subset of these linear functionals.
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The following notation and definitions are adapted from [19]. Let T = T m

denote the set of multi-indices, i.e. the set of m-tuples of non-negative integers.
We consider lexicographical ordering on T , using α � β to denote that α equals
or lexicographically precedes β. We also may define the partial ordering ≤, saying
(a1, . . . , am) ≤ (b1, . . . , bm) if and only if aj ≤ bj for all j.

We say that a subset A of T is Young-like if β ≤ α for α ∈ A and β ∈ T implies
that β ∈ A. A Young-like set corresponds to a m-dimensional partition with entries
bounded by 1.

For α = (a1, . . . , am) ∈ T , we define Tα(φ) = T am
m (· · ·T a2

2 (T a1
1 (φ)) · · · ). For A ⊆

T , we define NA(φ) =
⋂

α∈A kerTα(φ) ⊆M(K)N . (If A is Young-like, then NA(φ)
also equals

⋂
(a1,...,am)∈A kerT a1

1 (T a2
2 (· · ·T am

m (φ) · · · )), owing to Lemma 3.4.) For a

finite subset A ⊆ T , we use MA(φ) (or MT1,T2,...,Tm

A (φ) should we wish to clearly
identify T1, T2, . . . , Tm) to denote the matrix with rows given by {Tα(φ)}α∈A,
listed in lexicographical order. Thus NA(φ) is the null space of MA(φ). If A has
cardinality N , then let WA(φ) = detMA(φ) (and likewise let WT1,T2,...,Tm

A (φ) =
detMT1,T2,...,Tm

A (φ)).
The following is an generalization of Lemma 3.2 of [19], with the proof following

in the same spirit.

Theorem 3.6. For a given 1 × N matrix φ, there exists a Young-like set Y ⊂ T
with cardinality at most N , such that NY (φ) = NT (φ).

Proof. Let Sα = {β ∈ T | β ≺ α} and Y = {α ∈ T | NSα
6= NSα∪{α}}. Since

NSα∪{α} is a proper M(K) vector subspace of NSα
for α ∈ Y and since NSβ

⊆ NSα

when α ≺ β, we see that Y must have cardinality at most N , as otherwise there
would exist an α ∈ T such that NSα

had negative dimension.
We claim that NY ⊆ NSα∪{α} for all α ∈ T . This may be shown by induction.

Let β ∈ T and assume that the claim holds for all α ≺ β, which implies that NY ⊆
∩α≺βNSα∪{α} = NSβ

. Since NY ⊆ kerT β(φ) if β ∈ Y and since NSβ
= NSβ∪{β}

if β 6∈ Y , it follows that NY ⊆ NSβ∪{β}. So the claim holds, and so it follows that
NY = NT .

Now let α ∈ T \Y , β ∈ T , and α ≺ β. As α 6∈ Y , it follows that there exist
cγ ∈M(K) for γ ∈ Sα, only finitely many being non-zero, such that

(3.18) Tα(φ) =
∑

γ∈Sα

cγT
γ(φ).

In light of Lemma 3.4 and relations in the form of (3.2), we may apply T β−α to
this equation to see that T β(φ) is a M(K) linear combination of the elements of
{T γ(φ)}γ∈Sβ

. Thus Y is Young-like.
�
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Note that a Young-like set with cardinality less than N is contained in some
Young-like set of cardinality exactly N . So Theorem 3.6 yields the following two
corollaries.

Corollary 3.7. For a 1×N matrix φ, NT (φ) is non-trivial if and only if WY (φ) = 0
for every Young-like set Y of cardinality N .

Corollary 3.8. Let Ŷ denote the union of all Young-like sets of cardinality N . Ŷ
is a Young-like set of finite cardinality at least N and NŶ (φ) = NT (φ) for all 1×N
matrices φ.

Coupling either of these corollaries with Theorem 3.5 would produce criteria
for characterizing those φ for which kerφ ∩

⋂m
j=1 ker(Dηj

− Aj) is non-trivial. For
instance, we may form the following from Theorem 3.5 and Corollary 3.7

Corollary 3.9. With the assumptions of Theorem 3.5 and with φ being a 1 ×
N matrix with entries in mO(K), there exists a non-trivial element in kerφ ∩⋂m

j=1 ker(Dηj
− Aj) if and only if WY (φ) = 0 for every Young-like set Y of cardi-

nality N .

4. Meromorphic Whitney Multifunction Solutions to the Shockwave

Equation

Consider the equation

(4.1) ffξ = fη,

for a complex function f on a domain in C2 with coordinates (ξ, η). For simplic-
ity, we will refer to (4.1) as the shockwave equation. (This equation can also be
described the complexified, sign-flipped Burgers equation without viscosity, with ξ
corresponding to the space variable and η corresponding to the time variable.)

A complex multifunction on X, in the sense of Whitney, or a complex Whitney
multifunction on X, is a map from X to Cm

sym for some m, where Cm
sym denotes

the mth symmetric set power of C [22]. (One could also view elements of Cm
sym

as positive divisors on C with degree m.) Complex Whitney multifunctions have a
natural correspondence with the ζ-root systems of the polynomials

(4.2) ζN − e1(x)ζN−1 + · · ·+ (−1)NeN (x),

where ej(x) is a function on X giving the jth elementary symmetric function of
the outputs of the Whitney multifunction. A holomorphic Whitney multifunction
on X is a complex Whitney multifunction whose elementary symmetric functions
are holomorphic over X. So there is natural correspondence between holomorphic
Whitney multifunctions and Weierstrass polynomials.
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Terminological Note: The term multifunction is often used to denote any set-
valued function, which is different from a Whitney multifunction. Likewise a holo-
morphic multifunction, as it is customarily defined, differs from a holomorphic
Whitney multifunction. Somewhat related to a holomorphic Whitney multifunc-
tion is an algebroid multifunction on X, which denotes a set-valued function of the
form

(4.3) F (x) = {ζ ∈ C | ζn + a1(x)ζn−1 + · · ·+ an(x) = 0},

where a1, a2, . . . , an are holomorphic functions onX. However even this differs from
a holomorphic Whitney multifunction, for an algebroid multifunction treats the
roots as a set without regarding multiplicity. For example, let f(x) be a holomorphic
function, then (ζ−f(x)) and (ζ−f(x))2 produce two distinct holomorphic Whitney
multifunctions, yet they correspond to the same algebroid multifunction.

We say that e1, e2, . . . , eN satisfy the multi-shockwave system of equations if

(4.4) (e1)ξek − (ek+1)ξ = (ek)η, for 1 ≤ k ≤ N,

where eN+1 is regarded as 0. This definition stems from the following.

Lemma 4.1. Let f1, f2, . . . , fN be continuous functions defined on a domain Ω.
Let ek be the kth elementary symmetric function of f1, f2, . . . , fN . The following
are equivalent.

(1) The functions f1, f2, . . . , fN are holomorphic and each satisfy the shockwave
equation (4.1) on Ω.

(2) The functions e1, e2, . . . , eN are holomorphic and satisfy the multi-shockwave
system of equations (4.4) on Ω.

Proof. Assume 1. The functions {ek} are clearly holomorphic and the multi-
shockwave equations follow since

(4.5)

(e1)ξek− (ek+1)ξ =
∑

i1<···<ik

N∑
`=1

fi1 · · · fik
(f`)ξ−

∑
i1<···<ik

∑
` 6∈{i1,...,ik}

fi1 · · · fik
(f`)ξ

=
∑

i1<···<ik

∑
`∈{i1,...,ik}

(f`)ηfi1 · · · f̂` · · · fik
= (ek)η.

Now assume 2. The functions f1, f2, . . . , fN are roots of the polynomial

(4.6) ζN − e1ζ
N−1 + · · ·+ (−1)NeN =

N∏
j=1

(ζ − fj)

and are holomorphic, due to the holomorphicity of e1, e2, . . . , eN , [22] (pg. 27,
Theorem 9D).
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Let (ξ∗, η∗) be an arbitrary point in Ω. Let f̃j = fj |η=η∗ and ẽk = ek|η=η∗ , which
are holomorphic functions of ξ on Ω̃ = Ω ∩ {η = η∗}. By the Cauchy-Kovalevski
Theorem [8](pg. 16), there exist holomorphic functions F1, F2, . . . , FN satisfying
the shockwave equation on some neighborhood Ω′ of (ξ∗, η∗) in Ω with the initial
condition Fj = f̃j on Ω̃ ∩ Ω′. Let Ek be the kth elementary symmetric function of
F1, F2, . . . , FN . It follows by (4.5) that E1, E2, . . . , EN satisfy the multi-shockwave
equations. Since Ek = ẽk on Ω̃ ∩ Ω′, it holds, due to uniqueness in the Cauchy-
Kovalevski theorem, that Ej equals ej on Ω′ for every j. Consequentially, each fj

equals Fj and so satisfies the shockwave equation. �

Holomorphic Whitney multifunctions are locally unramified away from the set of
branch points, which is an analytic set with complex codimension one. So it is alto-
gether fitting to say that holomorphic solutions to the multi-shockwave equations
represent holomorphic Whitney multifunction solutions to the shockwave equation.
(Note: A like form of the multi-shockwave equations, involving (−1)kek instead,
has also been developed in [12](Lemma 16), though specifically in the case of a
non-trivial discriminant, i.e. the case of an algebroid multifunction solution.)

For the notion of meromorphic Whitney multifunction solutions to the shockwave
equation, we consider the elementary symmetric functions (e1, e2, . . . , eN ) in the
homogeneous (or projective) form [P0 : P1 : · · · : PN ], where ek is corresponds to
Pk/P0. We say that P0, P1, . . . , PN satisfy the general homogenized multi-shockwave
system of equations or the general h.s.w. system of equations, for the sake of
conciseness, if

(4.7) P0[(Pk+1)ξP0 − Pk+1(P0)ξ + (Pk)ηP0]

= Pk[(P1)ξP0 − P1(P0)ξ + (P0)ηP0] for 1 ≤ k ≤ N,

where PN+1 is regarded as 0. The justification for this definition is the following.

Lemma 4.2. Let e1, e2, . . . , eN and P0 be functions defined on a domain Ω. Assume
that P0 is not identically zero and let Pk = ekP0. The following are equivalent.

(1) The functions e1, e2, . . . , eN and P0 are holomorphic and e1, e2, . . . , eN sat-
isfy the multi-shockwave system of equations (4.4) on Ω.

(2) The functions P0, P1, . . . , PN are holomorphic, P0 divides each function
Pj within O(Ω), and P0, P1, . . . , PN satisfy the general h.s.w. system of
equations (4.7) on Ω.

Proof. It is clear that e1, e2, . . . eN and P0 are holomorphic if and only if P0, P1, . . . , PN

are holomorphic and each Pj , for 1 ≤ j ≤ N , is divisible by P0 in O(Ω).
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Completion of this proof only requires the calculation[(
P1

P0

)
ξ

Pk

P0
−
(
Pk+1

P0

)
ξ

−
(
Pk

P0

)
η

]
P 3

0

= ((P1)ξP0 − P1(P0)ξ)Pk − ((Pk+1)ξP0 − Pk+1(P0)ξ)P0 − ((Pk)ηP0 − Pk(P0)η)P0

= Pk[(P1)ξP0 − P1(P0)ξ + (P0)ηP0]− P0[(Pk+1)ξP0 − Pk+1(P0)ξ + (Pk)ηP0].

�

In analogy to the homogeneous coordinates for projective space, let [P0 : P1 : · · · :
PN ] denote the equivalence class in O(Ω)N+1\{0} under the equivalence relation ∼
where (P0, P1, . . . , PN ) ∼ (Q0, Q1, . . . , QN ) if there exists a meromorphic function λ
not equivalently zero such that Qj = λPj for 0 ≤ j ≤ N . (One could also consider
the corresponding equivalence class in M(Ω)N+1\{0}.) As one may verify, it is
well-defined to say that [P0 : P1 : · · · : PN ] satisfies (or does not satisfy) the
general h.s.w. equations, according to whether any or every representative of the
equivalence class does.

Assumptions on K: For the duration of this section we assume that K is a
compact set containing a point (ξ∗, η∗) such that

(a) O(K) is a unique factorization domain,
(b) non-empty slices of the form K ∩ {η = η0}, for η0 ∈ C, are connected and

contain the point (ξ∗, η0), and
(c) K̃ = {η ∈ C | (ξ∗, η) ∈ K} is Cauchy-viable with respect to η = η∗ (i.e. it

possesses a neighborhood basis of simply connected domains.)

Simple yet noteworthy examples of sets K with these properties include the point
(ξ∗, η∗) and any closed polydisk containing (ξ∗, η∗).

Our previous definitions and results, which were given for O(Ω), also hold with
O(K) instead. Our main reason for focusing on O(K) rather than O(Ω) is that the
latter cannot be a unique factorization domain.

We call (P0, P1, . . . , PN ) a lowest terms representative of [P0 : P1 : · · · : PN ] if
P0, P1, . . . , PN have no common irreducible factors in O(K). By our assumptions
on K, a lowest terms representative exists and is unique, up to multiplication by a
unit inO(K). The following reveals a useful subclass of lowest terms representatives
for solutions of (4.7).

Lemma 4.3. Let Q0, Q1, . . . , QN ∈ O(K), with Q0 not identically zero and K

satisfying the assumed properties of this section. If [Q0 : Q1 : · · · : QN ] satisfies
the general h.s.w. equations (4.7), then there exist P0, P1, . . . , PN ∈ O(K), with
P0 not identically zero, such that (P0)ξ = 0 and (P0, P1, · · · , PN ) is a lowest terms
representative of [Q0 : Q1 : · · · : QN ].
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Proof. Assume for sake of contradiction that there is no lowest terms representation
satisfying the conclusion of the lemma. Let (P0, P1, · · · , PN ) be a lowest terms
representation of [Q0 : Q1 : · · · : QN ]. Then there exists an irreducible r in O(K)
that divides P0 such that (ur)ξ 6≡ 0 for every unit u in O(K). Let n be the largest
positive integer such that rn|P0, and let k be the smallest positive integer such that
r 6 |Pk. Let α = P0(P1)ξ − (P0)ξP1 + P0(P0)η and note that

(4.8) P0[(Pk+1)ξP0 − Pk+1(P0)ξ + (Pk)ηP0] = Pkα.

Since r2n−1 divides the left hand side, it divides α. Next note that

(4.9) Pk−1α = (Pk)ξP
2
0 − Pk(P0)ξP0 + (Pk−1)ηP

2
0 ,

which holds due to the general h.s.w. equations if k > 1 or holds tautologically if
k = 1. The left-hand side is divisible by r2n, as are the first and third terms on the
right-hand side. So r2n|Pk(P0)ξP0, and thus rn|(P0)ξ. Applying the product rule
to a factorization of P0 shows that r|rξ. Therefore rξ = cr for some c in O(K).

Let (ξ0, η0) be a point in K where r vanishes. (If no such point exists, then r is an
unit.) On some neighborhood of (ξ0, η0), it holds that r(ξ, η) = r(ξ0, η) exp(

∫ ξ

ξ0
c(ξ′, η) dξ′).

Thus r vanishes along η = η0 near (ξ0, η0). Since K ∩ {η = η0} is connected, it
follows that r is zero along K ∩ {η = η0}. As r is irreducible, this implies that r is
the product of (η − η0) and a unit in O(K), achieving the desired contradiction.

�

Remark: As one consequence, Lemma 4.3 shows that the pole set of a meromor-
phic Whitney multifunction shockwave solution on K lies in a finite union of lines
of the form {η = ηj}.

We say that P0, P1, . . . , PN satisfy the refined homogenized multi-shockwave sys-
tem of equations, or the refined h.s.w. system of equations, if

(4.10) P0[(Pk+1)ξ + (Pk)η] = Pk[(P1)ξ + (P0)η], for 1 ≤ k ≤ N , and (P0)ξ = 0,

where PN+1 is regarded as 0. We say that P0, P1, . . . , PN satisfy the special ho-
mogenized multi-shockwave system of equations, or the special h.s.w. system of
equations, if there exists a holomorphic function µ such that

(4.11) (Pk+1)ξ + (Pk)η = µPk, for 0 ≤ k ≤ N , and (P0)ξ = 0,

where PN+1 is regarded as 0.
When (P0)ξ = 0, the general h.s.w. equations reduce to the refined h.s.w. equa-

tions. So Lemma 4.3 shows that every solution to the general h.s.w. equations
(4.7) in O(K) has a lowest terms representative that satisfies the refined h.s.w.
equations (4.10). This particular representative can be described in a number of
other equivalent ways.
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Lemma 4.4. Let P0, P1, . . . , PN ∈ O(K), with P0 not identically zero and K

satisfying the assumed properties of this section. The following are equivalent.

(1) P0, P1, . . . , PN satisfy the refined h.s.w. equations, and P0, P1, . . . , PN have
no common irreducible factors in O(K).

(2) P0, P1, . . . , PN satisfy the refined h.s.w. equations and P0 divides ((P1)ξ +
(P0)η) in O(K).

(3) P0, P1, . . . , PN satisfy the special h.s.w. equations.

Proof. First we establish the equivalence of 1 and 2. Assume 1 and let r be any
irreducible factor that divides P0 with a positive multiplicity m. There exists a
k ≥ 1 such that r 6 |Pk. Thus, by the refined h.s.w. equations (4.10), r divides
((P1)ξ + (P0)η), also with multiplicity m. It follows that P0 divides (P1)ξ + (P0)η,
implying 2.

Assume 2. Let (R0, R1, . . . , RN ) be a lowest terms representation of [P0 : P1 :
· · · : PN ] satisfying 1, which exists by Lemma 4.3. So there exists a non-zero
λ ∈ O(K) such that Pi = λRi, for all i. Since (R0)ξ = 0 and (P0)ξ = 0, it follows
that λξ = 0. By the previous paragraph, the functions R0, R1, . . . , RN also satisfy
2. By using that both R0|((R1)ξ + (R0)η) and P0|((P1)ξ + (P0)η) we obtain that
λ|λη. It follows that λ is non-vanishing and therefore a unit in O(K). Thus 1 holds.

To conclude we establish the equivalence of 2 and 3. Assuming 2, it follows that
µ = (P1)ξ+(P0)η

P0
is an holomorphic function. Then (4.11) holds for k = 0 tautologi-

cally, and it holds for other k by dividing each of the refined h.s.w. equations (4.10)
by P0. So 3 follows.

Assuming 3, then (4.11) for k = 0 gives that (P1)ξ + (P0)η = µP0. Therefore
P0|((P1)ξ +(P0)η) and the refined h.s.w. equations (4.10) follow by multiplying the
special h.s.w. equations (4.11) by P0.

�

Let P0, P1, . . . , PN ∈ O(K), with P0 not identically vanishing, such that [P0 :
P1 : · · · : PN ] satisfies the general h.s.w. equations. We call (P0, P1, . . . , PN ) a
refined representative of [P0 : P1 : · · · : PN ], if (P0)ξ = 0. We call (P0, P1, . . . , PN )
a special representative of [P0 : P1 : · · · : PN ] if it satisfies any one of the equivalent
conditions in Lemma 4.4.

If (P0, P1, . . . , PN ) is a special representative of [P0 : P1 : · · · : PN ], then all other
special representatives are of the form (λP0 : λP1 : · · · : λPN ) where λξ = 0 and λ

is a unit in O(K). (One may see this in the proof of Lemma 4.4.)
Suppose that P0, P1, . . . , PN satisfy the special h.s.w. equations for a particular

µ. Let λ be a unit in O(K) such that λξ = 0, and let P̂k = λPk for 0 ≤ k ≤ N .
Then P̂0, P̂1, . . . , P̂N satisfy the special h.s.w. equations with µ̂ = µ + λη

λ in place
of µ. Observe that µ̂ξ = µξ. So µξ remains unchanged, whereas µ|ξ=ξ∗ can be
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modified. If we let λ(ξ, η) = exp(−
∫ η

η∗
µ(ξ∗, η′) dη′), which is well-defined due to

our assumptions on K, then µ̂|ξ=ξ∗ = 0.
If P0, P1, . . . , PN satisfy the special h.s.w. equations with a function µ such that

µ|ξ=ξ∗ = 0, then we say that P0, P1, . . . , PN satisfy the canonical h.s.w. equations
and that (P0, P1, . . . , PN ) is a canonical representative of [P0 : P1 : · · · : PN ]. Two
canonical representatives differ only by multiplication by a complex number. This
discussion yields the following.

Proposition 4.5. With K satisfying the assumptions of this section, any solution
P0, P1, . . . , PN to the general h.s.w. equations in O(K), with P0 not identically
zero, has a canonical representative.

5. An Extended Shockwave Characterization of Boundaries of

Holomorphic 1-Chains within CP2

The focal point of this section is Theorem 5.1, which enhances the Dolbeault
and Henkin characterization for the case of CP2 by employing meromorphic multi-
shockwaves in place of unramified holomorphic shockwaves.

Let (w0 : w1 : w2) denote homogeneous coordinates for CP2. We identify C2

with the standard affine portion of CP2, given by w0 6= 0, on which we may use the
affine coordinates (z1, z2) = (w1/w0, w2/w0). We use the Fubini-Study metric on
CP2 for the purposes as defining k-dimensional Hausdorff measure on CP2 and the
mass seminorms for currents on CP2.

Let γ be a closed, rectifiable 1-current whose support is contained in C2 and
satisfies condition A1. The definition of rectifiable currents can be found in a
number of sources, such as the treatise by Federer [6] or the article by Harvey [10]
which is well-geared to the context of this paper. For the definition of condition
A1, one may refer to the work of Dinh [3].

Let V be a holomorphic 1-chain in CP2\ spt γ, and suppose that V has a trivial
extension to a current in CP2. Viewing V as a current in CP2, we say that γ bounds
a holomorphic 1-chain V within CP2 or that γ is the boundary of V within CP2 if
dV = γ.

Notes: (1) In order for V to have a trivial extension, it is sufficient that V have
finite mass [13]. (2) If γ bounds V within CP2 then, unless γ is zero, V is not a
genuine holomorphic 1-chain in CP2. References to V as a holomorphic 1-chain are
correct when they are interpreted in CP2\ spt γ.

Let gξ,η = z2 − ξ − ηz1 and g̃ξ,η = w2 − ξw0 − ηw1. The pair (ξ, η) can be
viewed as coordinates for an affine portion of (CP2)′, via correspondence to the
line gξ,η = 0. Define the projection πη : C2 → C by (z1, z2) 7→ z2 − ηz1, and let
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Uγ = {(ξ, η) ∈ C2 | ξ /∈ πη(γ)}. For (ξ, η) ∈ Uγ , we define

(5.1) Gγ(ξ, η) =
1

2πi

∫
γ

z1
dgξ,η

gξ,η
=

1
2πi

∫
γ

z1
d(z2 − ηz1)
z2 − ξ − ηz1

.

Theorem 5.1. For a closed, rectifiable 1-current γ whose support is contained in
C2 ⊂ CP2 and satisfies condition A1, the following are equivalent:

(i) γ bounds a holomorphic 1-chain, with finite mass, within CP2.
(ii) ∃ a point (ξ∗, η∗) with a neighborhood Ω for which there exist non-negative

integers N+ and N− and holomorphic functions f+
j for 1 ≤ j ≤ N+ and

f−j for 1 ≤ j ≤ N− on Ω, each satisfying the shockwave equation (4.1),
such that

(5.2)
∂2

∂ξ2
Gγ(ξ, η) =

∂2

∂ξ2

N+∑
j=1

f+
j (ξ, η)−

N−∑
j=1

f−j (ξ, η)

 .

(iii) ∃ a point (ξ∗, η∗) with a neighborhood Ω for which there exist non-negative
integers N+ and N− and holomorphic functions e+k for 1 ≤ k ≤ N+ and
e−k for 1 ≤ k ≤ N− on Ω, with both lists of functions satisfying the multi-
shockwave system of equations (4.4), such that

(5.3)
∂2

∂ξ2
Gγ(ξ, η) =

∂2

∂ξ2
(
e+1 (ξ, η)− e−1 (ξ, η)

)
.

(iii’) ∃ an open set U ⊆ C such that any point (ξ∗, η∗) with any neighborhood
domain Ω ⊆ Uγ ∩ (C× U) satisfies the criterion given in (iii).

(iv) ∃ a point (ξ∗, η∗) with a neighborhood Ω for which there exist non-negative
integers N+ and N− and holomorphic functions P+

k (ξ, η) for 0 ≤ k ≤ N+

and P−k (ξ, η) for 0 ≤ k ≤ N− on Ω, with neither P+
0 nor P−0 being identi-

cally zero and both lists of functions satisfying the refined h.s.w. system of
equations (4.10), such that

(5.4)
∂2

∂ξ2
Gγ(ξ, η) =

∂2

∂ξ2

(
P+

1 (ξ, η)
P+

0 (ξ, η)
− P−1 (ξ, η)
P−0 (ξ, η)

)
.

(iv’) Any point (ξ∗, η∗) with any neighborhood domain Ω ⊆ Uγ satisfies the cri-
terion given in (iv).

Dolbeault and Henkin, in addressing boundaries of holomorphic 1-chains within
CPn, originally established the equivalence of conditions (i) and (ii) in the case
that γ is a closed, oriented, C2 1-chain in C2, and without taking the second partial
derivatives on either side of the decomposition (5.2) [4]. In their subsequent work,
in which they were considering boundaries of holomorphic p-chains within CPn,
they introduce decompositions modulo ξ-affine functions [5], which produces a more
naturally equivalent statement. Dinh relaxed the regularity required for γ to the
assumptions presented here [3].
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We note a corollary and some applications of Theorem 5.1 before proceeding to
its proof.

Corollary 5.2. Let γ be a closed, rectifiable 1-current whose support is contained
in C2 ⊂ CP2 and satisfies condition A1, and let (ξ∗, η∗) ∈ Uγ . The following are
equivalent:

(1) γ bounds a holomorphic 1-chain, with finite mass, within CP2

(2) There exist germs of holomorphic functions P+
0 , P

+
1 , . . . , P

+
N+ and P−0 , P

−
1 , . . . , P

−
N−

at (ξ∗, η∗), for some non-negative integers N+ and N−, with P+
0 and P−0

not identically zero and both lists satisfying the refined h.s.w. system of
equations (4.10), such that

(5.5)
∂2

∂ξ2
Gγ(ξ, η) =

∂2

∂ξ2

(
P+

1 (ξ, η)
P+

0 (ξ, η)
− P−1 (ξ, η)
P−0 (ξ, η)

)
near (ξ∗, η∗).

Remark: Replacing the refined h.s.w. equations in 2 of Corollary 5.2 with either
the general h.s.w., special h.s.w., or canonical h.s.w. equations would produce
additional equivalent statements.

We return our attention to Theorem 5.1. If (i) holds then the points (ξ∗, η∗) at
which statement (ii) holds is the complement of an analytic set in Uγ dependent
on the family of holomorphic 1-chains bounded by γ. (cf. Lemma 5.3.) It is
not immediately clear whether this analytic set could be directly discerned from γ

without knowing the family of holomorphic 1-chains bounded by γ. Of course, if one
knows the whole family of holomorphic 1-chains bounded by γ, then it is moot to
check (ii) to determine whether (i) holds. If we exclude such a priori knowledge, then
verifying (ii) would seem to require some serendipity (albeit generic serendipity) in
selecting (ξ∗, η∗) or, inversely, contradicting (ii) would require the consideration of
a suitably broad range of (ξ∗, η∗). In contrast, condition (iv), being paired with
(iv’), is free of such hidden obstructions, which permits one to arbitrarily fix (ξ∗, η∗)
in Uγ . (Note that Uγ depends on γ in a transparent fashion.)

One can characterize whether γ bounds a holomorphic 1-chain having prescribed
behavior near the line z2 = ξ∗+η∗z1 according to whether Gγ has a decomposition
at (ξ∗, η∗) bearing a corresponding set of constraints. This method follows from
the Darboux Lemma, i.e. Lemma 5.3, its various extensions, i.e. Lemma 5.4
and Lemma 5.5, and their converse. (For example, conditions on the degree of
positive and negative intersections with the line translate into conditions on the
degree of the positive and negative portions of the decomposition.) One may do
this with decompositions in the form of either (ii), (iii), or (iv). But when we fix
our attention on a specific line z2 = ξ∗ + η∗z1, then decompositions of the form in
(ii) make some impositions on the choice of prescribed behavior. (Specifically, this
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forces the requirement that intersections of the holomorphic 1-chain with the line
z2 = ξ∗ + η∗z1 are locally component-wise transverse and that they do not occur
at infinity.) By using (iv) we avoid these impositions, thus it grants us a general
choice in prescribing behavior near the line z2 = ξ∗ + η∗z1.

The remainder of this section is devoted to the proof of Theorem 5.1. For a
holomorphic 1-chain V bounded by γ, let TV be the set of all (ξ, η) ∈ Uγ such that
some local component of V is not transverse to the line w2 = ξw0 + ηw1. Also let
IV to be the set of all (ξ, η) ∈ Uγ such that the line w2 = ξw0 + ηw1 intersects a
component of V at the line at infinity w0 = 0.

Lemma 5.3. Let V be a positive holomorphic 1-chain with finite mass bounded by γ
within CP2 and suppose that V has no components in the line at infinity w0 = 0. For
any simply-connected domain Ω ⊆ Uγ\(TV ∪ IV ), there exists a nonnegative integer
N and holomorphic functions f1, f2, . . . , fN satisfying the shockwave equation (4.1)
on Ω, such that

(5.6)
∂2

∂ξ2
Gγ(ξ, η) =

∂2

∂ξ2

N∑
j=1

fj(ξ, η).

This lemma can also be called the Darboux Lemma. The following proof is
similar to that given by Dolbeault and Henkin [4](Lemme 2.3).

Proof. Let N denote the total degree of intersection between V and the line w2 =
ξw0 + ηw1, which is constant for (ξ, η) in Ω. As Ω is simply connected and disjoint
from TV ∪ IV , we may define holomorphic maps pj(ξ, η) from Ω to C2, for 1 ≤ j ≤
N , such that p1(ξ, η), p2(ξ, η), . . . , pN (ξ, η) are the points of intersection, counting
multiplicity, between V and w2 = ξw0 + ηw1. Let fj(ξ, η) = z1|pj(ξ,η).

Let f = fj and p = pj for some j. Let (ξ0, η0) ∈ Ω, and define h = f(ξ0, η0).
The point p(ξ0, η0) = (h, ξ0 + η0h) is in the intersection of V and {z2 = (ξ0− τh)+
(η0 + τ)z1} for all τ such that (ξ0 − τh, η0 + τ) ∈ Ω. Furthermore,

(5.7) f(ξ0 − τf(ξ0, η0), η0 + τ) = f(ξ0, η0),

for τ near 0. Differentiation with respect to τ and evaluation at τ = 0 of the above
yields that

(5.8) fξ(ξ0, η0)(−f(ξ0, η0)) + fη(ξ0, η0) = 0.

As (ξ0, η0) was a general point in Ω, we see that ffξ = fη on Ω.
It only remains to establish (5.6). Note that

(5.9) Gγ(ξ, η) =
1

2πi

∫
γ

w1

w0

d(g̃ξ,η/w0)
g̃ξ,η/w0

=
1

2πi

∫
γ

(
w1dg̃ξ,η

w0g̃ξ,η
− w1dw0

w2
0

)
.
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By residue calculations,

(5.10)
1

2πi

∫
γ

w1dg̃ξ,η

w0g̃ξ,η
=
∑

j

w1

w0

∣∣∣∣
pj(ξ,η)

+R∞ =
∑

j

fj(ξ, η) +R∞,

where R∞ is the sum of the residues at w0 = 0.
As
∫

γ
w1dw0

w2
0

is constant with respect to ξ, it suffices to show that ∂2

∂ξ2 (R∞) = 0.
Consider a local irreducible portion of an analytic variety intersecting w0 = 0. Such
can be locally parameterized by λ 7→ (λn : w1(λ) : w2(λ)), with n ≥ 1, for λ small.
The residue for this portion of local analytic variety at infinity is

(5.11)
1

(n− 1)!
∂n−1

∂λn−1

(
w1

∂
∂λ (w2 − ηw1)− ξnλn−1

(w2 − ηw1)− ξλn

)∣∣∣∣∣
λ=0

.

It is a basic exercise to see that this is ξ-affine.
�

Lemma 5.4. Let V be a positive holomorphic 1-chain with finite mass bounded by
γ within CP2 and suppose that V has no components in the line at infinity, w0 = 0.
For any domain Ω ⊆ Uγ\IV , there exists a nonnegative integer N and holomorphic
functions e1, e2, . . . , eN satisfying the multi-shockwave equations (4.4) on Ω, such
that

(5.12)
∂2

∂ξ2
Gγ(ξ, η) =

∂2

∂ξ2
e1(ξ, η)

Proof. As with Lemma 5.3, define N to be the degree of intersection between V and
the line w2 = ξw0 + ηw1. Define ek(ξ, η) on Ω to be the kth elementary symmetric
function of the z1 coordinates of the intersections, counting multiplicities, between
V with the line w2 = ξw0 + ηw1. By symmetry, the functions ek are well-defined
on Ω and are continuous since Ω ⊆ Uγ\IV . By local application of Lemma 5.3
and Lemma 4.1, the functions e1, e2, . . . , eN are holomorphic and satisfy the multi-
shockwave system of equations and (5.12) on Ω\TV . By a removable singularities
argument, [16] (Lemma 3), these properties extend to all of Ω.

�

Lemma 5.5. Let V be a positive holomorphic 1-chain with finite mass bounded by
γ within CP2 and suppose that V has no components in the line at infinity, w0 = 0.
For any domain Ω ⊆ Uγ , there exists a nonnegative integer N and holomorphic
functions P0, P1, . . . , PN satisfying the refined h.s.w. equations (4.10) on Ω, such
that

(5.13)
∂2

∂ξ2
Gγ(ξ, η) =

∂2

∂ξ2
P1(ξ, η)
P0(ξ, η)
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Proof. DefineN and holomorphic functions e1, e2, . . . , eN on Ω\IV as in Lemma 5.4.
Let EV be the finite set of all (ξ, η) such that V has a component contained in the
line w2 = ξw0 + ηw1.

Let (ξ∗, η∗) ∈ Ω ∩ IV \EV , and define q = (0 : 1 : η∗), which is a point of
intersection between V and the line at infinity w0 = 0. Let u1 = w2−ξ∗w0−η∗w1

w1

and u2 = w0
w1

, which can be used as holomorphic coordinates near q. Let U be a
neighborhood of q and let F (u1, u2) be a holomorphic function on U such that the
divisor of F is V ∩ U . We may suppose that U has the form {|u1| < δ, |u2| < ε},
where δ and ε are chosen so that V does not intersect {|u1| ≤ δ, |u2| = ε} and
such that V intersects the lines u2 = 0 and u1 = 0 only at q. Define ΩU =
Ω ∩ {(ξ, η) | ε|ξ − ξ∗|+ |η − η∗| < δ}, shrinking δ if necessary to ensure that ΩU is
connected and disjoint from EV .

Let m be the degree of intersection between V and the line at infinity u2 = 0 at
q. In particular, m is the order of vanishing of F (u1, 0) at u1 = 0.

Claim: There exists a constant C such that

(5.14) |ej(ξ, η)| ≤
C

|η − η∗|m
,

for 1 ≤ j ≤ N and (ξ, η) ∈ ΩU\{η = η∗}.
For the moment, assume that this claim holds. Let η∗1 , . . . , η

∗
s be all the values

of η∗ for which (0 : 1 : η∗) is a point of intersection between V and the line at
infinity, and let m1, . . . ,ms give the corresponding degrees of intersection between
V and w0 = 0 at (0 : 1 : η∗j ). Let P0(ξ, η) =

∏s
`=1(η − η∗` )m` and Pk = P0ek

for 1 ≤ k ≤ N , which give holomorphic functions on Ω\IV that satisfy (5.13). By
Lemma 4.2, we see that P0, . . . , PN satisfy the refined h.s.w. system of equations on
Ω\IV . Due to the claim above, each function Pk extends to a holomorphic function
on Ω\(EV ∩ IV ), which then extends holomorphically to Ω as EV has codimension
two. The appropriate properties likewise continue to all of Ω, thus establishing the
lemma. So it only remains to prove the claim.

Let (ξ, η) be an arbitrary point in ΩU\{η = η∗}. Let NU denote the degree of
intersection between V and the line w2 = ξw0 + ηw1 inside U , which is constant
for (ξ, η) in ΩU\{η = η∗}. Let eU,k(ξ, η) be the kth elementary symmetric function
of the z1 (or 1/u2) coordinates of the intersections, counting multiplicity, between
V and w2 = ξw0 + ηw1 inside U . Let cU,k(ξ, η) be the sum of kth powers of the
z1 coordinates of the same intersections. Define the standard generating functions
EU (t) = 1 +

∑NU

k=1 eU,kt
k and CU (t) =

∑∞
k=1 cU,kt

k−1, which are related by the

equations CU (−t) = E′
U (t)

EU (t) and EU (t) = exp
(∫ t

0
CU (−τ) dτ

)
[14].
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Let Hξ,η(λ) = F (((ξ − ξ∗)λ + (η − η∗), λ)), which is non-vanishing on |λ| = ε.
For k ≥ 1, define

(5.15) Sk(ξ, η) =
1

2πi

∫
|λ|=ε

1
λk

H ′
ξ,η(λ)

Hξ,η(λ)
dλ,

which is bounded for (ξ, η) ∈ ΩU\{η = η∗}. By basic residue calculations,

(5.16) cU,k(ξ, η) = Sk(ξ, η)− 1
(k − 1)!

dk−1

dλk−1

(
H ′

ξ,η(λ)
Hξ,η(λ)

)∣∣∣∣
λ=0

.

So

(5.17) CU (t) =
∞∑

k=1

Sk(ξ, η)tk−1 −
H ′

ξ,η(t)
Hξ,η(t)

,

and thus

(5.18) EU (t) = exp

( ∞∑
k=1

−Sk(ξ, η)
k

(−t)k

) ∞∑
k=0

(−1)k

k!
H

(k)
ξ,η (0)

Hξ,η(0)
tk.

Thus eU,k is a linear combination of the elements of
{

H
(j)
ξ,η(0)

Hξ,η(0)

}
0≤j≤k

using co-

efficients in terms of {Sk(ξ, η)}. Since Hξ,η(0) = F (η − η∗, 0) is comparable to
(η − η∗)m and H

(j)
ξ,η(0) is bounded for (ξ, η) ∈ ΩU\{η = η∗}, it holds that there

exists a constant C such that

(5.19) |eU,k(ξ, η)| ≤ C

|η − η∗|m
,

for 1 ≤ k ≤ NU and (ξ, η) ∈ ΩU\{η = η∗}.
Finally, note that ej(ξ, η) =

∑
k aj−k(ξ, η)eU,k(ξ, η), where a`(ξ, η) is the `th

elementary symmetric function, counting multiplicity, of the z1 values of the inter-
sections between V and the line w2 = ξw0 + ηw1 outside U . By the estimate (5.19)
and the fact that there are uniform bounds on the functions a`(ξ, η) for (ξ, η) ∈ ΩU ,
the claim follows.

�

Proof. (of Theorem 5.1). Assume that V is a holomorphic 1-chain bounded by γ

within CP2. By separating positive and negative components, we may decompose V
into the difference of two positive holomorphic 1-chains V + and V −. Let γ+ = dV +

and γ− = dV −. Thus V = V + − V − and γ = γ+ − γ−.
Assuming (i) holds, then (iii’) and (iv’) follow as a result of Lemma 5.4 and

Lemma 5.5, respectively, being applied to V + and V −, with the former also requir-
ing the fact that inclusion in TV is only dependent on η for (ξ, η) in Uγ . It is clear
that (iv’) implies (iv) and that (iii’) implies (iii).

Assume (iv). Reposition (ξ∗, η∗) and shrink Ω so that P+
0 and P−0 are non-

vanishing on Ω. By defining e+k = P+
k

P+
0

and e−k = P−
k

P−
0

, (iii) is satisfied, using
Lemma 4.2



24 RONALD A. WALKER

Assume (iii). Reposition (ξ∗, η∗) and shrink Ω so that tN
+

+e+1 t
N+−1+ · · ·+eN+

and tN
−

+ e−1 t
N−−1 + · · · + eN− split into a product of monic t-linear factors in

the polynomial ring O(Ω)[t]. From the monic t-linear factors, each of which has
the form t + f(ξ, η), extract the t-constant terms to yield holomorphic functions
f+
1 , f

+
2 , . . . , f

+
N+ and f−1 , f

−
2 , . . . , f

−
N− that satisfy (ii), owing to Lemma 4.1.

That (ii) implies (i) is shown in a paper by Dinh [3](Thèoréme 7.4).
�

6. Characterizing Decomposability

Theorem 5.1 and Corollary 5.2 characterize the closed rectifiable 1-currents that
bound holomorphic 1-chains within CP2 by the existence of certain “shockwave
decompositions” of Gγ . It is natural to inquire how one may determine when Gγ

has such decompositions or not. This section focuses on this issue, culminating
in Theorem 6.7 and the proofs of Theorem 1.1 and Theorem 1.2. We begin by
presenting some introductory definitions and by outlining our pathway to the final
theorems.

Let K be a non-empty, connected, compact set and let G ∈ O(K). We say that
P+

0 , . . . , P
+
N+ ∈ O(K) and P−0 , . . . , P

−
N− ∈ O(K), with P+

0 and P−0 not identically
zero, represent a h.s.w. decomposition (with signature (N+, N−)) of G on K if
both lists of germs satisfy the refined h.s.w. system of equations (4.10) and

(6.1)
∂2

∂ξ2
G =

∂2

∂ξ2

(
P+

1

P+
0

− P−1
P−0

)
.

We call N+−N− the degree of the decomposition, whereas we call N+ +N− the
absolute degree of the decomposition. A positive h.s.w. decomposition is a h.s.w.
decomposition with signature (N+, 0), meaning that P−1 be regarded as zero and
∂2

∂ξ2G = ∂2

∂ξ2

(
P+

1

P+
0

)
.

By Theorem 5.1 we see that γ bounds a holomorphic 1-chain within CP2 if
and only if Gγ has a h.s.w. decomposition for any arbitrarily selected non-empty,
connected, compact set K in Uγ .

Assumptions on K: For the remainder of this section we assume that K is a
connected, Stein, compact set containing the point (ξ∗, η∗) such that

(a) O(K) is a unique factorization domain,
(b) K is Cauchy-viable with respect to ξ = ξ∗, and
(c) K̃ := {η ∈ C | (ξ∗, η) ∈ K} is Cauchy-viable with respect to η = η∗.

(See Subsection 2.1 for definitions and information regarding Cauchy-viability.)
These assumptions on K are stronger than those employed in Section 4, so the
results and discussion of Section 4 apply. It may be instructive for the reader
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to keep the case where K is simply the set {(ξ∗, η∗)} readily in mind, as it is
informative and dovetails with Corollary 5.2.

Let µ be an element of O(K), and let N be a non-negative integer. We say
that µ satisfies condition (?N ) if there exists P0, P1, . . . , PN ∈ O(K), with P0 not
identically zero, such that

(6.2) (Pk+1)ξ = µPk − (Pk)η, for 0 ≤ k ≤ N , and (P0)ξ = 0.

where PN+1 is regarded as zero.
Positive h.s.w decompositions and condition (?N ) are directly connected, as is

expressed in the proposition below.

Proposition 6.1. Let N be a non-negative integer, and suppose that G and µ are
elements of O(K) such that µξ = Gξξ. G has a positive h.s.w. decomposition with
degree N if and only if µ satisfies condition (?N ).

Proof. From the discussion concluding Section 4, there is no loss of generality to
suppose that µ|ξ=ξ∗ = 0.

If G has a positive h.s.w. decomposition, then there exist P0, P1, . . . , PN ∈ O(K)
satisfying (6.2) with some µ̂ ∈ O(K) in place of µ. We may also assume, without
loss of generality, that µ̂|ξ=ξ∗ = 0. Since Gξξ = ∂2

∂ξ2

(
P1
P0

)
= µ̂ξ, it follows that

µ̂ = µ.
If µ satisfies condition (?N ), then it follows that G has a positive h.s.w. decom-

position with degree N owing to the definitions and the fact that (6.2) implies that
µξ = ∂2

∂ξ2

(
P1
P0

)
. �

Proposition 6.1 yields a subtle, yet significant, simplification. Identifying the
existence of a positive h.s.w. decomposition requires finding suitable solutions to
a system of non-linear first order partial differential equations, whereas verifying
condition (?N ) involves finding solutions to a system of linear first order partial
differential equations.

Also it is worthwhile to note that (6.2) is an overdetermined system of partial
differential equations, consisting of N +2 equations on N +1 functions. Absent the
equation 0 = µPN − (PN )η, (6.2) would yield an exactly determined initial value
problem using Dξ and taking Cauchy data on ξ = ξ∗. Similarly, removal of the
equation (P0)ξ = 0, (6.2) would give an exactly determined initial value problem
using Dη and taking Cauchy data on η = η∗.

In Subsection 6.1 we show that solutions to (6.2) correspond to the mutual solu-
tions of a certain linear equation and two particular systems of exactly determined
linear ordinary differential equations, one with respect to ξ and another with re-
spect η. This permits us to apply the results of Section 3. Doing so, we synthesize
our conclusions in Subsection 6.2, which shows, among other things, that condition
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(?N ) on µ is equivalent to a finite set of explicitly constructible partial differential
conditions on µ.

6.1. An Ordinary Differential Representation of Condition (?N ). The key
result of this subsection is that the solutions to (6.2) can be characterized as the
mutual solutions to a linear equation and two collections of ordinary differential
equations. These results are ultimately expressed in Theorem 6.4 and Theorem 6.5,
with an important identity expressed in Lemma 6.6.

We define the following objects for representing formal differential expressions.
Let U denote the free Z-algebra with formal generators {Di

ηDj
ξµ}i≥0,j≥1. For n ≥

0, let Vn denote the free U-module generated by the formal elements {Dj
ξPi}0≤j≤i≤n,

and let V−1 be the zero module.
Given µ ∈ O(K) there is a uniquely defined (Z-algebra) homomorphism from

U to O(K) defined by mapping each formal symbol Di
ηDj

ξµ to Di
ηD

j
ξµ. Likewise,

given µ, P0, P1, . . . , Pn ∈ O(n) there is a uniquely defined (Z-module) homomor-
phism from Vn to O(K) defined by evaluation. We will use Φ to denote the
evaluation homomorphism appropriate to the given context.

[Notational note: To consolidate certain cases into fewer equations, we may
employ, at times, the following notational devices. Let δa denote the Kronecker
delta function, defined as 1 when a = 0 and 0 otherwise. Let

(
m
n

)
denote the usual

binomial coefficient when 0 ≤ n ≤ m, but with the definition extended to be zero
when n < 0 or n > m. A summation expression where the upper index is one less
than the lower index, e.g.

∑a−1
j=a bj , is permitted, in which case it is simply treated

as an empty sum and regarded as zero.]
We start with the following basic identity. Its proof is automatic.

Proposition 6.2. Suppose that µ, P0, P1, . . . , PN+1 satisfy (6.2). For 0 ≤ m ≤ N ,
n ≥ 0,

Dn+1
ξ Pm+1 = Dn

ξ (µPm − (Pm)η)

=
n−1∑
j=0

[(
n

j

)
(Dn−j

ξ µ)(Dj
ξPm)

]
+ (µ−Dη) (Dn

ξ Pm).
(6.3)

The following lemma captures a remarkable feature of (6.2) and its solutions.

Lemma 6.3. For 0 ≤ k < `, there exists an element pk,` of Vk−1 such that
D`

ξPk = Φ(pk,`) whenever µ, P0, P1, . . . , PN+1 ∈ O(K) satisfy (6.2) with N ≥ k−1.

Proof. First we prove the case ` = k + 1 by induction on k. This case is trivially
true for k = 0, since (P0)ξ = 0. Also one may see that it is true for k = 1 since
(P1)ξξ = ∂

∂ξ (µP0 − (P0)η) = µξP0.
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Now assume that the statement holds for all non-negative k less than or equal
to k′, for a fixed k′ ≥ 1. By Proposition 6.2,

(6.4) Dk′+2
ξ Pk′+1 =

k′∑
j=0

[(
k′ + 1
j

)
(Dk′+1−j

ξ µ)(Dj
ξPk′)

]
+ (µ−Dη) (Dk′+1

ξ Pk′).

In the equation above, the summation term corresponds to a formal expression
in Vk′ , so we may simply direct our attention to the rightmost term. By the
inductive hypothesis, this term agrees with a Z-linear combination of terms of the
form (µ−Dη)(rDn

ξ Pm), where r ∈ U and 0 ≤ n ≤ m ≤ k′ − 1. Observe that

(6.5) (µ−Dη)(rDn
ξ Pm) = r(µ−Dη)(Dn

ξ Pm)− (Dηr)Dn
ξ Pm

= rDn+1
ξ Pm+1 −

n−1∑
j=0

[((
n

j

)
r(Dn−j

ξ µ)
)

(Dj
ξPm)

]
− (Dηr)Dn

ξ Pm,

using Proposition 6.2 in the last step. Thus (µ − Dη)(rDn
ξ Pm) agrees with an

expression in Vk′ . This proves the lemma’s statement for ` = k + 1.
Define Dξ as the map on Vk−1 that operates as formal differentiation on U and

satisfies Dξ(D
j
ξPi) = Dj+1

ξ Pi for 0 ≤ j < i ≤ k − 1 and Dξ(Di
ξPi) = pi,i+1 for

0 ≤ i ≤ k−1. Thus this map agrees with Dξ under evaluation, i.e. Φ◦Dξ = Dξ ◦Φ.
Let pk,` = Dξ

`−k−1(pk,k+1), for ` > k + 1, which concludes the proof.
�

So Lemma 6.3 reveals that there exist ρk,`,i,j ∈ U such that

(6.6) D`
ξPk =

k−1∑
i=0

i∑
j=0

Φ(ρk,`,i,j)D
j
ξPi,

for 0 ≤ k < `, and for all µ, P0, P1, . . . , PN+1 ∈ O(K) that satisfy (6.2) with
N ≥ k − 1. Furthermore, the proof of Lemma 6.3 expresses an explicit means
for recursively constructing ρk,`,i,j . In the appendix, we use this to generate a
constructive definition for ρk,`,i,j , which is stated in (A.1).

Our fundamental interest lies in the case ` = k + 1. So to shorten notation, we
use νk,i,j to denote ρk,k+1,i,j . From the derived recursion formula for ρk,`,i,j given
in (A.1), it follows that we may define νk,i,j recursively as follows.

• For 0 ≤ k and any of j < 0, i < j, or i ≥ k,

νk,i,j = 0.
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• For 0 ≤ j ≤ i < k,

(6.7) νk,i,j = −
i∑

j1=j+1

(
j1
j

)
(Dj1−j

ξ µ)νk−1,i,j1

− (Dηνk−1,i,j) + δk−1−i

(
k

j

)
(Dk−j

ξ µ) + νk−1,i−1,j−1.

Some examples of pk,k+1, as derived from this definition, are listed below.

p1,2 = (Dξµ)P0

p2,3 = −(DηDξµ)P0 + 3(Dξµ)(DξP1) + (D2
ξµ)P1

p3,4 = (D2
ηDξµ)P0 − 4(DηDξµ)(DξP1)− (3(Dξµ)2 + (DηD2

ξµ))P1

+ 6(Dξµ)(D2
ξP2) + 4(D2

ξµ)(DξP2) + (D3
ξµ)P2

For µ and P0, P1, . . . , PN satisfying (6.2) with PN+1 = 0, the following equations
are satisfied;

(6.8) Dξ(Dk
ξPk) =

k−1∑
i=0

i∑
j=0

Φ(νk,i,j)D
j
ξPi, for 0 ≤ k ≤ N,

(6.9) 0 =
N∑

i=0

i∑
j=0

Φ(νN+1,i,j)D
j
ξPi,

and, due to Proposition 6.2,

(6.10) Dη(Dj
ξPi) =

j∑
j′=0

[(
j

j′

)
(Dj−j′

ξ µ)(Dj′

ξ Pi)
]
−Dj+1

ξ Pi+1, for 0 ≤ j ≤ i ≤ N,

where PN+1 is again regarded as zero.
The equations (6.8), (6.9), and (6.10) can be expressed in matrix form. (Recall

the matrix and indexing protocol given in Subsection 2.2.) Let I = {(i, j) | 0 ≤ j ≤
i} be an index set with the ordering ≺ defined such that (i, j) � (i′j′) if and only
if i = i′ and j ≥ j′ or i < i′. In other words, ≺ is the lexicographical ordering of
I, using a reverse ordering for the second entry. Let IN = {(i, j) | 0 ≤ j ≤ i ≤ N},
which is a finite subset of I. Let

(6.11) ~vN =
[
v0,0 v1,1 v1,0 v2,2 · · · v2,0 · · · vN,N · · · vN,0

]T
be a IN × 1 matrix with entries in O(K). The entry vi,j will serve to represent
Dj

ξPi.
The equations of (6.8) can be expressed as Dξ~vN = AN~vN , where AN is the

IN × IN companion matrix with the following entry-wise definitions.

• For (0, 0) � (i, j), (i′, j′) � (N, 0) with i 6= j,
AN

(i′,j′)
(i,j) = δi−i′δj+1−j′ .
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• For (0, 0) � (i, i), (i′, j′) � (N, 0),
AN

(i′,j′)
(i,i) = νi,i′,j′ (which equals zero if (i, i) � (i′, j′)).

Equation (6.9) can be expressed as MN~vN = 0, where MN is the 1× IN matrix
with the entry-wise definition MN

(i,j) = νN+1,i,j .
The equations of (6.10) can be expressed in matrix form as Dη~vN = BN~vN ,

where BN is the IN × IN matrix defined entry-wise by the unified equation,

(6.12) BN
(i′,j′)
(i,j) = δi−i′

(
j

j′

)
Dj−j′

ξ µ− δi+1−i′δj+1−j′ .

Observations: The matrix AN is strictly lower-triangular with respect to the
ordering on IN , and all of its entries are derived from expressions in U. The matrix
BN is upper triangular with respect to the ordering on IN . The diagonal entries of
BN equal µ, while the entries above the diagonal are expressions in U.

Theorem 6.4. If P0, P1, . . . , PN satisfy (6.2) with PN+1 = 0 and vi,j = Dj
ξPi then

~vN ∈ ker(Dξ −AN ) ∩ ker(Dη −BN ) ∩ ker(MN ).

The proof simply follows from (6.8), (6.9), and (6.10). Also a stronger form of
the converse holds.

Theorem 6.5. If ~vN ∈ ker(Dξ−AN )∩ker(Dη−BN ) and Pi = vi,0 for 0 ≤ i ≤ N .
Then P0, P1, . . . , PN satisfy (6.2) with PN+1 = 0.

Proof. Since ~vN ∈ ker(Dξ−AN ), it holds that Dξv0,0 = 0 and Dξvi,0 = vi,1 for 0 <
i ≤ N . Since ~vN ∈ ker(Dη−BN ), it holds thatDηvi,0 = µvi,0−vi+1,1 for 0 ≤ i < N ,
and that DηvN,0 = µvN,0. Thus the functions P0 = v0,0, P1 = v1,0, . . . , PN = vN,0

satisfy (6.2) with PN+1 = 0.
�

One key point, to be used later, is that Dξ −AN , Dη −BN , and MN satisfy the
following commutator relationship.

Lemma 6.6. Let ∆N be the IN×1 matrix defined entry-wise by ∆N (i,j) = δi−Nδj−N .
Then

(6.13) [Dξ −AN , Dη −BN ] = −∆NMN .

Proof. Expanding the commutator yields that

(6.14) [Dξ −AN , Dη −BN ] = (AN )η − (BN )ξ +ANBN −BNAN .

From (6.12), we calculate that

(6.15) (DξBN )(i
′,j′)

(i,j) = δi−i′

(
j

j′

)
(Dj−j′+1

ξ µ),

for general (i, j, ) and (i′, j′) in IN .
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To calculate the other terms of (6.14), we consider two separate cases. For the
first case, we assume that 0 ≤ j < i ≤ N . Then

(6.16) (DηAN )(i
′,j′)

(i,j) = 0,

(6.17) (ANBN )(i
′,j′)

(i,j) = BN
(i′,j′)
(i,j+1) = δi−i′

(
j + 1
j′

)
(Dj+1−j′

ξ µ)− δi+1−i′δj+2−j′ ,

and

(6.18) (BNAN )(i
′,j′)

(i,j) =
j∑

j1=0

(
j

j1

)
(Dj−j1

ξ µ)AN
(i′,j′)
(i,j1)

−

AN
(i′,j′)
(i+1,j+1) if i < N

0 if i = N

= δi−i′

(
j

j′ − 1

)
(Dj−j′+1

ξ µ)− δi+1−i′δj+2−j′ .

Substituting these into (6.14) along with (6.15) yields that

(6.19) [Dξ −AN , Dη −BN ](i
′,j′)

(i,j)

= δi−i′

[
−
(
j

j′

)
+
(
j + 1
j′

)
−
(

j

j′ − 1

)]
(Dj−j′+1

ξ µ) = 0,

for 0 ≤ j < i ≤ N and (i′, j′) ∈ IN .
For the second case, we assume that 0 ≤ j = i ≤ N . Then

(6.20) (DηAN )(i
′,j′)

(i,i) = Dηνi,i′,j′ ,

(6.21) (ANBN )(i
′,j′)

(i,i) =
N∑

i1=0

i1∑
j1=0

νi,i1,j1

(
δi1−i′

(
j1
j′

)
(Dj1−j′

ξ µ)− δi1+1−i′δj1+1−j′

)

=
i′∑

j1=j′+1

(
j1
j′

)
(Dj1−j′

ξ µ)νi,i′,j1 + µνi,i′,j′ − νi,i′−1,j′−1

= µνi,i′,j′ − νi+1,i′,j′ −Dηνi,i′,j′ + δi−i′

(
i+ 1
j′

)
(Di+1−j′

ξ µ),

using the recursive definition (6.7) for νi+1,i′,j′ in the last equality, and

(6.22) (BNAN )(i
′,j′)

(i,i)

=
N∑

i1=0

i1−1∑
j1=0

(
δi−i1

(
i

j1

)
(Di−j1

ξ µ)− δi+1−i1δi+1−j1

)
δi1−i′δj1+1−j′

+
N∑

i1=0

(
δi−i1

(
i

i1

)
(Di−i1

ξ µ)− δi+1−i1

)
νi1,i′,j′

= δi−i′

(
i

j′ − 1

)
(Di−j′+1

ξ µ) + µνi,i′,j′ −

νi+1,i′,j′ if i < N

0 if i = N
.
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Substituting these into (6.14) along with (6.15) shows that

(6.23) [Dξ −AN , Dη −BN ](i
′,j′)

(i,i)

= δi−i′

[
−
(
i

j′

)
+
(
i+ 1
j′

)
−
(

i

j′ − 1

)]
(Di−j′+1

ξ µ)− δi−NνN+1,i′,j′

= −δi−NMN
(i′,j′),

for 0 ≤ j = i ≤ N and (i′, j′) ∈ IN .
�

6.2. Concluding Synthesis. Lemma 6.6 and the strict triangularity of AN and
B̃N (when µξ|ξ=ξ∗ = 0) place us in a situation where we can apply the results
of Section 3 for determining when ker(Dξ − AN ) ∩ ker(Dη − BN ) ∩ ker(MN ) is
non-trivial.

For a IN×1 matrix ψ with entries in O(K), let TN (ψ) = Dξ(ψ)+ψAN , UN (ψ) =
Dη(ψ) + ψBN , and ǓN (ψ) = Dη(ψ) + ψ(BN − µ IdIN

).

Theorem 6.7. Let N be a non-negative integer. Let K be a compact set containing
a point (ξ∗, η∗) that satisfies the assumptions given at the beginning of Section 6,
and suppose that µ ∈ O(K). The function µ satisfies condition (?N ) if and only if
WTN ,ǓN

Y (MN ) = 0 for every Young diagram (two-dimensional Young-like set) Y of
cardinality |IN | =

(
N+2

2

)
.

Proof. The entries of Ǔk
N (T j

N (MN )) are differential expressions of µξ, and thus so
are the expressions produced by WTN ,ǓN

Y (MN ). Due to this and the discussion
concluding Section 4, it suffices to consider the case when µ|ξ=ξ∗ = 0.

By Theorem 6.4 and Theorem 6.5 we have that µ satisfies condition (?N ) if and
only if kerMN∩ker(Dξ−AN )∩ker(Dη−BN ) is non-trivial. Note that AN , BN , and
MN satisfy the conditions for Corollary 3.9. So it follows that µ satisfies condition
(?N ) if and only if WTN ,UN

Y (MN ) = 0 for every Young diagram Y of cardinality
|IN |. For any Young diagram Y , one may transform the matrix MTN ,UN

Y (MN )
via elementary row operations into the matrix MTN ,ǓN

Y (MN ), which implies that
WTN ,ǓN

Y (MN ) = WTN ,UN

Y (MN ).
�

Theorem 6.7 yields Theorem 1.2 as a special case. Now we prove Theorem 1.1.

Proof of Theorem 1.1. If γ bounds a holomorphic 1-chain V , then by separating the
positive and negative components of V , we may define two positive holomorphic
1-chains V + and V −, without any common components, such that V = V + − V −.
Then define γ+ = dV + and γ− = dV −. Owing to the properties of condition A1,
such as those exhibited in [3](Section 1), if there exists an arc common to γ+ and
γ− with the same orientation, then V + and V − have components that locally agree
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somewhere, which is contrary to the construction of V + and V −. By Lemma 5.5
and Proposition 6.1 we see that µ+ and µ−, as defined in the theorem, both satisfy
condition (?N+) and (?N−), respectively, for large enough N+ and N−.

The converse result follows simply from Corollary 5.2 and Proposition 6.1. �

Remarks:

(1) When determining whether γ bounds a holomorphic 1-chain that has only
positive intersections with the line z2 = ξ∗ + η∗z1, i.e. taking N− = 0, it
suffices to consider simply the decomposition γ+ = γ and γ− = 0.

(2) A notable feature of Theorem 1.2 is that it characterizes whether µ statisfies
condition (?N ) using purely differential conditions on µξ. There exist other
characterizations of condition (?N ) using integro-differential equations. We
briefly outline here one related approach that was detailed in [18]. Let KN

be the fundamental matrix of Dξ−AN normalized at ξ = ξ∗ and let LN be
the fundamental matrix of Dη − B̃N normalized at η = η∗, both of which
can be constructed from AN and B̃N by integration. Lemma 6.6 can be
used to show that KN and LN provide changes of variables such that

(6.24) L−1
N K−1

N (ker(Dξ −AN ) ∩ ker(Dη −BN ) ∩ ker(MN ))

= ker(Dξ) ∩ ker(Dη) ∩ ker(MNKNLN ).

Therefore (?N ) holds if and only if the entries of MNKNLN are linearly de-
pendent. The entries of KN and LN can be expressed as integro-differential
expressions of µξ. And since linear dependence of holomorphic functions
can be expressed in terms of generalized Wronskians, which are defined
using differential operations, one can obtain an integro-differential charac-
terization of functions satisfying condition (?N ) [19].

(3) An interesting application of the Dolbeault Henkin characterization within
CP2 to the Inverse Dirichlet-Neumann problem on bordered Riemann sur-
faces is presented in [12]. That work also contains a characterization of the
trace, i.e. e1 in our terminology, of an algebroid multifunction solution to
ffξ = fη. Use of algebroid multifunctions eliminates some but not all of
the genericity restraints on (ξ∗, η∗). (As in (iii’) of Theorem 5.1, generic-
ity of ξ∗ can be eliminated, but genericity of η∗ is retained.) The related
characterization statement (Theorem 4 of [12]) is formulated in terms of
the existence of holomorphic functions of η that satisfy a certain integro-
differential equation.

(4) If γ is a simple, closed curve, then γ bounds a holomorphic 1-chain if and
only if Gγ or −Gγ satisfies (?N ) for some N . Example 3.2 of [11] yields
something similar to this remark for CP2\CP0 via an approach using a
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different arrangement of integral functions instead of Gγ . By Corollary 4.2
of [20], along with the Hadamard criteria for rationality as discussed in [21],
one obtains a related result for C × CP1 that is expressible in differential
terms.

(5) Consider the case where γ is a finite 1-chain with finitely many self-intersections.
Let {γj} denote the finite family of simple closed oriented curves whose ori-
entation locally agrees with that of γ. There are only a finite number of
ways that γ can be decomposed into γ+− γ− as described in Theorem 1.1,
as γ+ and −γ− must be positive linear combinations of the curves from
{γj}. So, in this case, determining whether γ bounds a holomorphic 1-
chain for a prescribed N+ and N− would involve only a finite number of
partial differential equations on {Gγj

}. (However, the number of ways that
γ can be decomposed into γ+ − γ− depends exponentially on the number
of curves in {γj}.)

So Theorem 6.7 yields a finite set of explicitly calculable partial differential
conditions that are together equivalent to condition (?N ). It may be possible to
reduce the list of conditions. When considering general φ, the collection of Young-
diagrams required for Corollary 3.9 cannot be reduced (See [19].) But the specifics
of MN , AN , and BN may limit the range of possible shapes for Y in Theorem 3.6
and so reduce the number of Young diagrams needed for Theorem 6.7.

To illustrate the previous comment, we discuss the case N = 1. With Theo-
rem 6.7, we need no more than the following row matrices.

M1 = [−µξη 3µξ µξξ ]

T1(M1) = [−µξξη + 3µξµξ 4µξξ µξξξ ]

T 2
1 (M1) = [−µξξξη + 10µξξµξ 5µξξξ µξξξξ ]

Ǔ1(M1) = [−µξηη 4µξη µξξη + 3µξµξ ]

Ǔ2
1 (M1) = [−µξηηη 5µξηη µξξηη + 10µξηµξ ]

We claim that M1 and T1(M1) are linearly independent over M(K), unless
µξ = 0. Suppose for the sake of contradiction that µξ 6= 0 and that M1 and T1(M1)
are linearly dependent over M(K). Neither M1 nor T1(M1) is identically zero, so
there exists a k ∈M(K)\{0} such that T1(M1) = kM1. From this we may deduce
that

(6.25) 0 = (Dξ −
1
4
k)(4µξξ − 3kµξ)− 4(µξξξ − kµξξ) = (−1

4
k2 + kξ)(3µξ).
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Therefore kξ = 1
4k

2. Also we derive that

(6.26) 0 = (Dξ − k)(−µξξη + 3µ2
ξ + kµξη)

= −µξξξη + 6µξξµξ + 2kµξξη − 3kµ2
ξ −

3
4
k2µξη,

and that

(6.27) 0 = Dη(µξξξ − kµξξ) +
1
4
(Dη(k)− kDη)(4µξξ − 3kµξ)

= µξξξη − 2kµξξη +
3
4
k2µξη.

From these two equations we see that 0 = 6µξξµξ − 3kµ2
ξ . Since 4µξξ = 3kµξ,

it follows that kµ2
ξ = 0, which yields a contradiction. Thus M1 and T1(M1) are

linearly independent over M(K) if µξ 6= 0.
By the above, and owing to the construction of Y in Theorem 3.6, it follows that

we need only to consider the Young diagrams of cardinality 3 that contain (0, 0)
and (0, 1), namely {(0, 0), (1, 0), (2, 0)} and {(0, 0), (1, 0), (0, 1)}. Consequentially,
µ satisfies (?1) if and only if

(6.28)

∣∣∣∣∣∣∣
−µξη 3µξ µξξ

−µξξη + 3µξµξ 4µξξ µξξξ

−µξξξη + 10µξξµξ 5µξξξ µξξξξ

∣∣∣∣∣∣∣ = 0,

and

(6.29)

∣∣∣∣∣∣∣
−µξη 3µξ µξξ

−µξξη + 3µξµξ 4µξξ µξξξ

−µξηη 4µξη µξξη + 3µξµξ

∣∣∣∣∣∣∣ = 0.

For general N , we conjecture that the row matrices MN , TN (MN ), . . . , TN
N (MN )

are linearly independent over M(K), if µξ 6= 0. If this conjecture holds, then from
the construction of Y in Theorem 3.6, it follows that we may adjust Theorem 6.7 to
use only the Young diagrams of cardinality |IN | that contain (0, 0), (1, 0), . . . , (N, 0).

Via a fairly lengthy calculation not presented here, the author has verified this
conjecture for N = 2, i.e. the row matrices M2, T2(M2), and T 2

N (M2) are linearly
independent over M(K) if µξ 6= 0. For N = 2, restricting to the Young diagrams
of cardinality 6 that contain (0, 0), (1, 0), and (2, 0) would reduce the number of
Young diagrams to be used from 11 to 7.

Appendix A. Derivation of Explicit Formulae for pk,`

In this appendix we derive explicit recursion relations defining pk,` to satisfy
Lemma 6.3 and we point out an identity that is a practical help in calculation.

We define ρk,`,i,j recursively for 0 ≤ k < ` (and i, j ∈ Z) as follows;
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• For 0 ≤ k < `, and for j < 0, i < j, or i ≥ k,

ρk,`,i,j = 0.

• For 0 ≤ k < ` and 0 ≤ j ≤ i < k,

(A.1) ρk,`,i,j =

`−2∑
j1=k

(
`− 1
j1

)
(D`−1−j1

ξ µ)ρk−1,j1,i,j −
i∑

j1=j+1

(
j1
j

)
(Dj1−j

ξ µ)ρk−1,`−1,i,j1

+ δk−1−i

(
`− 1
j

)
(D`−1−j

ξ µ)− (Dηρk−1,`−1,i,j) + ρk−1,`−1,i−1,j−1.

(One can verify that the above constitutes a valid recursive definition by induc-
tion on k.)

Theorem A.1. Lemma 6.3 is satisfied by defining

(A.2) pk,` =
k−1∑
i=0

i∑
j=0

ρk,`,i,jD
j
ξPi,

for 0 ≤ k < `.

Proof. Assume that µ, P0, P1, . . . , PN+1 are general functions satisfying (6.2) for
N ≥ k − 1. We prove the theorem by induction on k. Note the the theorem holds
clearly in the case k = 0 (since (P0)ξ = 0).

Assume that the theorem holds with k replaced by k′ for a k′ such that 0 ≤ k′ <

k. By Proposition 6.2,

D`
ξPk =

`−2∑
j1=k

[(
`− 1
j1

)
(D`−1−j1

ξ µ)(Dj1
ξ Pk−1)

]

+
k−1∑
j1=0

[(
`− 1
j1

)
(D`−1−j1

ξ µ)(Dj1
ξ Pk−1)

]
+ (µ−Dη)(D`−1

ξ Pk−1),

which equals, by employing the inductive hypothesis,

`−2∑
j1=k

(`− 1
j1

)
(D`−1−j1

ξ µ)
k−2∑
i=0

i∑
j=0

ρk−1,j1,i,j(D
j
ξPi)


+

k−1∑
i=0

i∑
j=0

[
δk−1−i

(
`− 1
j

)
(D`−1−j

ξ µ)(Dj
ξPi)

]

+
k−2∑
i=0

i∑
j=0

[
−(Dηρk−1,`−1,i,j)(D

j
ξPi) + ρk−1,`−1,i,j

(
(µ−Dη)Dj

ξPi

)]
.
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By regrouping terms and using Proposition 6.2, this is equal to

k−1∑
i=0

i∑
j=0

[(
`−2∑
j1=k

(
`− 1
j1

)
(D`−1−j1

ξ µ)ρk−1,j1,i,j

+ δk−1−i

(
`− 1
j

)
(D`−1−j

ξ µ)− (Dηρk−1,`−1,i,j)

)
Dj

ξPi

]

+
k−2∑
i=0

i∑
j1=0

ρk−1,`−1,i,j1

Dj1+1
ξ Pi+1 −

j1−1∑
j=0

(
j1
j

)
(Dj1−j

ξ µ)(Dj
ξPi)

 ,
producing, by interchanging or re-indexing summation operations,

k−1∑
i=0

i∑
j=0

[(
`−2∑
j1=k

(
`− 1
j1

)
(D`−1−j1

ξ µ)ρk−1,j1,i,j

+ δk−1−i

(
`− 1
j

)
(D`−1−j

ξ µ)− (Dηρk−1,`−1,i,j) + ρk−1,`−1,i−1,j1−1

−
i∑

j1=j+1

ρk−1,`−1,i,j1

(
j1
j

)
(Dj1−j

ξ µ)

)
Dj

ξPi

]
,

which equals, by the definition (A.1) of ρk,`,i,j ,

(A.3)
k−1∑
i=0

i∑
j=0

[
ρk,`,i,jD

j
ξPi

]
.

�

Remarks: The definition of pk,` according to (A.2) agrees with the approach
used the proof of Lemma 6.3. In the case that ` = k+ 1, the proof of Theorem A.1
is simply the proof of Lemma 6.3 plus “bookkeeping”. For ` > k + 1 it also
holds that pk,` equals Dξ(pk,`−1), according to the definition of Dξ in the proof
of Lemma 6.3. However a proof of this requires showing the identity ρk,`+1,i,j =
Dξ(ρk,`,i,j) + ρk,`,i,j−1 +

∑k−1
i′=i+1 ρk,`,i′,i′ρi′,i′+1,i,j for 0 ≤ j ≤ i < k < `, which

requires a rather arduous calculation that we omit here.
We also mention the following identity, which can help simplify calculations of

ρk,`,i,j .

Theorem A.2. For j ≥ 0 and 0 ≤ k < `,

(A.4) ρk,`,i,j =
(
`

j

)
ρk−j,`−j,i−j,0.

Proof. If k ≤ i or i < j, the identity holds trivially. So we may suppose that
0 ≤ j ≤ i < k < `. One may calculate that

(A.5) ρi+1,`,i,j =
j∑

j2=0

(
`− j2 − 1
j − j2

)
(D`−1−j

ξ µ) =
(
`

j

)
D`−1−j

ξ µ,
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which is sufficient to prove the identity in the case k = i+ 1.
We proceed by induction on k−i. Assume that the identity holds when k−i < m

for somem ≥ 2 and suppose that k−i = m. (What remains is a technical calculation
that we simply summarize.) Apply the definition (A.2) recursively (j + 1 times) to
its left-most term ρk−1,`−1,i−1,j−1 to generate a formula for ρk,`,i,j where all of the
terms involved can employ the inductive hypothesis. By broad application of the
inductive hypothesis, substantial use of the properties of binomial coefficients, and
some summation manipulation, the identity follows.

�
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