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Abstract. We study linear dependence in the case of quotients of analytic

functions in several variables (real or complex). We identify the least subcollec-

tion of generalized Wronskians whose identical vanishing is sufficient for linear

dependence. Our proof admits a straight-forward algebraic generalization and

also constitutes an alternative proof of the previously known result that the

identical vanishing of the whole collection of generalized Wronskians implies

linear dependence. Motivated by the structure of this proof, we introduce a

method for calculating the space of linear relations. We conclude with some

reflections about this method that may be promising from a computational

point of view.

1. Introduction

As is well-known, a finite set of analytic functions of a single variable is linearly
dependent if and only if its Wronskian is (identically) zero. A generalization of this
to multivariate polynomials was made by Roth [11] in the course of an application
to number theory. Roth’s work states that a finite set of multivariate polynomials
is linearly dependent if and only if its generalized Wronskians are zero. This result
is also true for a finite set of quotients of analytic functions, which may be seen
by either extending an argument presented by Cassels [5] (pp. 112-113), using
Wolsson’s generalization of a theorem of Bôcher [14], or noting work of Berenstein,
Chang, and Li [2].

Roth notes in a footnote of his work [11], that there may exist relations among
generalized Wronskians and their derivatives, so that the identical vanishing of some
may imply the identical vanishing of others. Part of this article will demonstrate the
least subcollection of generalized Wronskians whose identical vanishing establishes
linear dependence, in the context of quotients of analytic functions. As we will
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point out at the end of Section 3, the proofs here readily hold in a broader algebraic
context.

In Section 2. we begin with the relevant definitions and some background for
the study of linear dependence. In Section 3, we introduce Young-like sets, which
are a higher-dimensional analog of Young diagrams. We prove that the identical
vanishing of the subcollection of generalized Wronskians associated with Young-like
sets is sufficient for, and hence equivalent to, linear dependence in the context of
quotients of multivariate analytic functions. We will show that this result is sharp,
in the sense that any subcollection of generalized Wronskians whose collective, iden-
tical vanishing implies linear dependence must contain the generalized Wronskians
associated with Young-like sets. In Section 4, using some of the concepts from
the proofs of Section 3 we introduce a related procedure for determining the space
of linear relations and offer some observations that touch on some calculational
considerations.

2. Definitions and Background

We will begin with some definitions and background associated with linear de-
pendence in general, and then we will direct our focus onto the case of analytic
functions and their quotients.

Let Ω be a (connected) domain in Km, where K is either R or C. We use
coordinates x1, x2, . . . , xm on Km. Let f1, f2, . . . , fN be K-valued functions defined
on Ω. Let φ be the row vector [f1, f2, . . . , fN ]. The functions f1, f2, . . . , fN are
linearly dependent over K if and only if there exists constants c1, c2, . . . , cN in K,
not all zero, such that

∑N
j cjfj = 0 on Ω, or equivalently, if there exists a non-zero

column vector c in KN such that φc = 0 on Ω.
Let T = Tm be the set of multi-indices, that is the m-tuples of non-negative

integers. Per usual multi-index notation, for α = (a1, a2, . . . , am) ∈ T , let |α| =∑m
j aj , xα = xa1

1 xa2
2 · · ·xam

m , and Dα = Da1
x1

Da2
x2
· · ·Dam

xm
. Let ej denote the multi-

index with 1 in the jth spot, and 0 elsewhere. For α, β ∈ T , let α � β denote
that α lexicographically precedes or equals β, i.e. α = (a1, a2, . . . , am) � β =
(b1, b2, . . . , bm) means that either α = β or there exists an j0 such that aj = bj

for j < j0 and aj0 < bj0 . Also define the partial ordering ≤ on T , by saying that
(a1, a2, . . . , am) ≤ (b1, b2, . . . , bm) if and only if aj ≤ bj for all j.

For a finite list of multi-indices α1, α2, . . . , αk ∈ T , we define

(1) Mφ
α1,α2,...,αk =


Dα1

φ

Dα2
φ

...
Dαk

φ

 =


Dα1

f1 Dα1
f2 · · · Dα1

fN

Dα2
f1 Dα2

f2 · · · Dα2
fN

...
...

...
Dαk

f1 Dαk

f2 · · · Dαk

fN

 ,
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and let Wφ
α1,α2,...αN = det(Mφ

α1,α2,...αN ). Suppose that A = {α1, α2, . . . , αk} ⊆ T ,

where α1, α2, . . . αk are labeled in lexicographical order. Let Mφ
A denote Mφ

α1,α2,...,αk ,

and, if A has cardinality N , let Wφ
A = det(Mφ

A).
Let T (k) = {α ∈ T | |α| < k} for any positive integer k. Let G be the collection

of all subsets A ⊆ T such that A has cardinality N and A ∩ T (j) has cardinality
at least j for 1 ≤ j ≤ N . (Alternatively, a set A of cardinality N is in G if its
elements can be labeled as α1, α2, . . . .αN , not necessarily in lexicographical order,
such that |αj | < j for 1 ≤ j ≤ N .) Using the terminology introduced by Roth [11],
the determinants Wφ

A, A ∈ G are called the generalized Wronskians of the functions
contained in φ.

If we assume that the entries of φ are linear dependent over K and contained in
CN−1(Ω), then there exists a non-zero column vector c in KN such that φc = 0,
and it follows that (Dαφ)c = Dα(φc) = 0 for all α ∈ T (N). So the column
vector c is a null vector for any matrix Mφ

A with A ⊆ T (N). As this shows, the
identical vanishing of the generalized Wronskians is a necessary condition for linear
dependence.

Expository Note: In the case of single variable functions, there exists only one
generalized Wronskian, which is the classically defined Wronskian. For general (not
necessarily analytic) functions of a single variable, assuming appropriate regularity
for the Wronskian to be defined, the identical vanishing of the Wronskian is not
sufficient for linear dependence. For a simple example, consider any collection of C∞

bump functions whose supports have empty intersection. A more classic example,
attributed to Peano [9], is the pair of functions f1(x) = x2 and f2(x) = x|x|. A fair
amount of work has considered what conditions may be adjoined to the identical
vanishing of the Wronskian to form a sufficient condition for linear dependence in
the single-variable case. See Peano [10], Bôcher [4], Curtiss [6], Meisters [8], and
Wolsson [13]. When one adds that the functions are analytic, then an identically
vanishing Wronskian is sufficient for linear dependence [3]. Analogously, for general
(not necessarily analytic) functions of several variables, with appropriate regularity
assumed, the identical vanishing of the generalized Wronskians is not sufficient for
linear dependence. Some examination of the general multivariate case has been
given by Wolsson [14].

Now we turn our attention to analytic functions and quotients of analytic func-
tions. In this setting, the matter of linear dependence on a domain can be reduced
to linear dependence on any neighborhood of any point in the domain, due to the
analytic continuation of relations.

Let O denote the ring of germs of analytic functions about the origin in Km.
Let M denote the fraction field of O or the field of germs of quotients of analytic
functions about the origin in Km. (In the case that K = C then M is the field
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of germs of meromorphic functions about the origin in Cm.) For the results that
follow, a more algebraically general definition for O (and M) could be used instead;
see the remark at the end of Section 3.

Here is a formulation of Roth’s theorem, generalized to our present setting.

Theorem 2.1. Assume that f1, f2, . . . , fN are contained in M. The entries of φ =
[f1, f2, . . . , fN ] are linear dependent over K if and only if all generalized Wronskians
Wφ

A, A ∈ G, are zero.

Historical Note: Roth introduced and established his condition in the case of
multivariate polynomials [11]. An earlier result for multivariate polynomials was
established by Siegel [12]. An even earlier statement was given for analytic functions
by Kellogg [7], but without proof. Kellogg’s condition can be succinctly expressed
in our notation as saying that linear dependence of the entries of φ is equivalent
to the matrix Mφ

T (N) having rank less than N . Siegel’s result additionally specifies
that there is equality between the degree of linear dependence of the entries of φ

and the degree to which Mφ
T (N) has rank less than N .

Proofs of Theorem 2.1 can be derived from arguments or results already existing
in the literature. For one, a concise, direct proof presented by Cassels [5] (pp.112-
113) for the case of multivariate rational functions readily works in the case of
quotients of analytic functions. Separately, a result by Wolsson (explicitly stated
for K = R but extendible to K = C) regarding the general (non-analytic) case [14]
(Theorem 1) can be used to imply Theorem 2.1. In the specific case that K = C
and f1, f2, . . . , fN are entire functions, Berenstein, Chang, and Li give a stronger
result than that of Wolsson and explicitly derive Theorem 2.1 as a corollary [2]
(Corollary 2.2). Their approach also holds for quotients of analytic functions (real
or complex). Additionally, the content of Section 3 will provide an independent
means of showing Theorem 2.1.

When a selected generalized Wronskian W
f1,...,fN−1

α1,...αN−1 of f1, . . . , fN−1 is not zero,

the identical vanishing of the particular generalized Wronskians W
f1,...,fN−1,fN

α1,...,αN−1,αk+ej

for 1 ≤ k ≤ N − 1 and 1 ≤ j ≤ m is sufficient to imply linear dependence of
f1, . . . , fN , as Berenstein, Chang, and Li explicitly demonstrate in the case that
K = C and the functions f1, f2, . . . , fN are entire [2] (Theorem 2.1). Also, as they
point out, their arguments hold in a broader context [2] (Remarks (3) and (4)).
(However, Remark (4) needs to be carefully interpreted. For functions f1, . . . , fN ∈
CN−1(Ω), their theorem holds locally about points in Ω\Z, where Z = {x ∈
Ω | W

f1,...,fN−1

α1,...αN−1 = 0}, but it can fail locally about points in Z. cf. the paper by
Wolsson [14].) For analytic functions and their quotients, which is our present focus,
their result holds locally about any point, due to the continuation of relations.
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So the assumption that a specific generalized Wronskian of f1, . . . , fN−1 is not
zero causes the identical vanishing of a proper subcollection of the generalized Wron-
skians of f1, f2, . . . fN to be sufficient to imply linear dependence of f1, f2, . . . , fN .
Even without added assumptions, there is a proper subcollection of the generalized
Wronskians whose identical vanishing implies linear independence for quotients of
analytic functions, as we will see in the next section.

3. The Least Collection of Generalized Wronskians

The central idea of Theorem 2.1 is that the identical vanishing of the generalized
Wronskians proves to be sufficient for linear dependence in the case of germs of
analytic functions. However this result can be improved by replacing the collection
of generalized Wronskians with a smaller subcollection of generalized Wronskians.
The particular subcollection that we introduce proves to be the least one that
satisfies this. These statements are the content of Theorem 3.1 and Theorem 3.4

We call a set A ⊆ T Young-like if α ∈ A, β ∈ T , and β ≤ α imply that
β ∈ A. For m = 2, finite Young-like sets correspond to Young diagrams. (More
generally, Young-like sets can be identified with m-dimensional partitions having
entries bounded by 1.) Let Y be the collection of all Young-like sets in T of
cardinality N . Note that Y ⊆ G.

Theorem 3.1. Assume that f1, f2, . . . , fN are contained in M. The entries of φ =
[f1, f2, . . . , fN ] are linear dependent over K if and only if the generalized Wronskians
Wφ

Y associated with Young-like sets, Y ∈ Y, are zero.

Remark: Theorem 3.1 implies Theorem 2.1.
For α ∈ T , we define φα = Dα(φ), with differentiation performed entry-wise. We

will regularly view a M×N matrix with entries inM as a M-linear map on column
vectors from MN to MM . Thus a 1×N matrix, such as φ or φα, is considered to
have its kernel reside in MN . For A ⊆ T , let NA = N φ

A =
⋂

α∈A ker φα ⊆ MN ,
which is the null space of Mφ

A.

Lemma 3.2. For a 1 × N matrix φ with entries in M, there exists a Young-like
set Y ⊆ T with cardinality at most N such that NY = NT .

Proof. Define Sα = {β ∈ T | β ≺ α}, and let Y = Y (φ) = {α ∈ T | NSα
6=

NSα∪{α}} = {α ∈ T | NSα
6⊆ ker φα}.

Suppose that β and γ are any multi-indices satisfying β ≤ γ and β /∈ Y . Then
NSβ

⊆ ker φβ , and so φβ is a M-linear combination of {φα}α∈Sβ
. In other words,

(2) φβ =
∑

α∈Sβ

aαφα,



6 RONALD A. WALKER

for coefficients aα ∈M, α ∈ Sβ , with only finitely many being non-zero. Let δ equal
γ − β. Differentiating (2) by Dδ, yields φγ on the left and a M-linear combination
of φα, α ∈ Sγ on the right. Thus NSγ ⊆ ker φγ , implying γ /∈ Y . Therefore Y is
Young-like.

We claim that NY ⊆ NSα∪{α} for all α ∈ T . Since T is well-ordered under �,
we may establish this claim using transfinite induction. Consider any multi-index
β where NY ⊆ NSα∪{α} for all α ∈ Sβ , yielding that NY ⊆

⋂
α≺β NSα∪{α} = NSβ

.
If β /∈ Y , then NY ⊆ NSβ

= NSβ∪{β}. If β ∈ Y , then NY ⊆ ker φβ which implies
that NY ⊆ NSβ

∩ ker φβ = NSβ∪{β}. Therefore, by induction, the claim holds, so
NY ⊆

⋂
α∈T NSα∪{α} = NT . Since the inclusion NT ⊆ NY is clear, the equality

NY = NT follows.
It only remains to show that Y has cardinality at most N . Suppose, for sake

of contradiction, that Y contains N + 1 distinct elements, α1 ≺ α2 ≺ . . . ≺ αN+1.
Then

(3) MN )
⋂

α�α1

ker φα )
⋂

α�α2

ker φα ) . . . )
⋂

α�αN+1

ker φα

is a strictly decreasing sequence of vector spaces, the last of which has codimension
at least N + 1 within MN , which yields a contradiction. �

Lemma 3.3. For a 1×N matrix φ with entries in M,

(4) NT =
(
NT ∩KN

)
⊗K M.

Proof. The right-hand side of (4) is tautologically contained in NT . For the reverse
inclusion it suffices to show that there exists a M-basis for NT contained in NT ∩
KN .

Let v1, v2, . . . , vk be a reduced M-basis for NT . Specifically we mean that there
exist distinct indices `1, `2, . . . , `k such that (vi)`j

= δi,j , where (v)` denotes the

`th entry of v and δi,j =

1 if i = j

0 if i 6= j
.

Observe that Dxn
vi ∈ NT for any i and n, since

(5) Dα(φ)Dxn
vi = Dxn

(Dα(φ)vi)−Dxn
(Dα(φ))vi = 0,

for all α ∈ T . Thus any Dxnvi is expressible as a M-linear combination of the basis
vectors v1, v2, . . . , vk. Since the basis is reduced and (Dxnvi)`j = 0 for 1 ≤ j ≤ k,
it follows that Dxn(vi) = 0. As this holds for any n and any i, it follows that the
basis vectors v1, v2, . . . , vk are contained in NT ∩KN . �

(of Theorem 3.1). It only remains to show that the identical vanishing of the gen-
eralized Wronskians corresponding to Young-like sets is sufficient for linear depen-
dence, whereas necessity was established in Section 2.
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Let Y be the Young-like set satisfying Lemma 3.2. If |Y | < N , then one can
adjoin appropriately chosen elements to Y to produce a larger Young-like set with
cardinality exactly N . (For example, one may achieve this by using extra elements
of the form (k, 0, . . . , 0).) So let B be a Young-like set with cardinality N that
contains Y . By assumption, Wφ

B = 0, so it follows that NB is non-trivial. Since
NB ⊆ NY = NT , it also holds that NT is non-trivial. By Lemma 3.3, this implies
the existence of a non-trivial column vector c = (c1, c2, . . . , cN ) in NT ∩KN . The
column vector c satisfies φc = 0, which implies that the entries of φ are linear
dependent over K. �

We now show that the collection Y is the least, with respect to inclusion, among
all collections of subsets of T that are sufficient for demonstrating linear dependence
in a manner like Theorem 3.1.

Theorem 3.4. Let H be any collection of subsets of T that would satisfy Theo-
rem 2.1 with G replaced by H (or Theorem 3.1 with Y replaced by H). Then H
contains Y.

Proof. Let A = {α1, α2, . . . , αN} be an element of Y, i.e. A is a finite Young-like
set of cardinality N . Let φ = [xα1

, xα2
, . . . , xαN

]. The entries of φ are distinct
monomials and thus linearly independent. So by hypothesis, H must contain a set
B such that Wφ

B is not zero.
If β = (b1, b2, . . . , bm) 6∈ A, then for any α = (a1, a2, . . . , aN ) ∈ A, Dβ(xα) = 0

as bj > aj for some j, due to A being Young-like. Hence Dβφ = [0 0 . . . 0], if
β 6∈ A. So Wφ

B is zero, if B 6= A. Therefore A = B ∈ H. (In contrast, Wφ
A equals a

non-zero constant, which may be verified by a careful calculation.)
�

It has already been noted that Y ⊆ G. In the case that m = 1 or N ≤ 2,
then Y = G. For m ≥ 2 and N ≥ 3, Y is a proper subcollection of G. (For
example, let A = {α1, . . . , αN}, where αj = (j − 1, 0, . . . , 0) for 1 ≤ j ≤ N − 1 and
αN = (0, N − 1, 0, . . . , 0), and note that A ∈ G\Y.) Moreover, when N ≥ 3 and
m ≥ 2, the cardinalities of Y and G will significantly differ, as the following will
illustrate.

Young-like sets of dimension m and cardinality N have a correspondence with
(m − 1)-dimensional partitions of N . A method for calculating the number of k-
dimensional partitions of N is known, as are the explicit results for N ≤ 6 [1]
(Section 11.4). This yields the following information about |Y|.
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(6)

N |Y|
2 m

3 1
2m2 + 1

2m

4 1
6m3 + m2 − 1

6m

5 1
24m4 + 3

4m3 − 1
24m2 + 1

4m

6 1
120m5 + 1

3m4 + 19
24m3 − 1

3m2 + 1
5m

One can divide G into disjoint pieces Gi1,...,iN
= {A ∈ G | |A∩T (j)| = ij , for 1 ≤

j ≤ N} indexed by the increasing sequences i1 ≤ i2 ≤ · · · ≤ iN that satisfy i1 = 1,
iN = N , and ij ≥ j for 1 < j < N . A calculation shows that |T (j)\T (j − 1)| =(
m+j−2

j−1

)
and consequentially that

(7) |Gi1,...,iN
| =

N∏
j=2

((
m+j−2

j−1

)
ij − ij−1

)
.

So (with i1 = 1 and iN = N)

(8) |G| =
N∑

i2=2

N∑
i3=max(i2,3)

· · ·
N∑

iN−1=max(iN−2,N−1)

N∏
j=2

((
m+j−2

j−1

)
ij − ij−1

)
.

The results of calculating |G| for a few values of N are given below.

(9)
N |G|
2 m

3 1
2m3 + m2 − 1

2m

4 1
12m6 + 13

24m5 + 13
12m4 + 1

8m3 − 7
6m2 + 1

3m

5 m10

288 + 29m9

576 + 85m8

288 + 253m7

288 + 39m6

32 + 29m5

576 − 493m4

288 − 35m3

48 + 43m2

36 − m
4

Calculating |G| can be cumbersome, particularly for large values of N . So it is
worth noting that |G1,2,...,N | =

∏N
j=2

(
m+j−2

j−1

)
provides an simple lower bound for

|G|. (This term is dominant in (8) for N fixed and m large.)
In the case that m = 2, it holds that |G1,2,...,N | = N ! and |Y| = p(N), where

p(N) denotes the number of partitions of N . By the Hardy-Ramanujan formula,

p(N) ∼ 1
4N
√

3
exp

[
π
√

2N
3

]
as N →∞ [1] (Section 5.1).

As may be seen from the previous discussion, |Y| is substantially smaller than
|G| in some various asymptotic ways. But even among small values of N and m the
difference between Y and G can be appreciable, as the following table demonstrates.
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(10)

(|Y|, |G|) m = 2 m = 3 m = 4 m = 5

N = 3 (3, 7) (6, 21) (10, 46) (15, 85)

N = 4 (5, 37) (13, 274) (26, 1164) (45, 3660)

N = 5 (7, 268) (24, 5806) (59, 55151) (120, 334230)

Remark: The arguments for proving Theorem 3.1 and Theorem 3.4 still apply
with a more abstract definition of O. For Theorem 3.1 and its supporting definitions
we only required two essential properties of O. One, we used that O is an integral
domain to define the field M. (In contrast, the ring of germs of C∞ functions is
not an integral domain.) Two, we required the presence of the derivations Dxj

,
1 ≤ j ≤ m, on O satisfying ∩m

j=1 ker Dxj
= K in M. For the leastness theorem,

Theorem 3.4, we used that O includes coordinate elements x1, x2, . . . , xm dual to
the derivations Dx1 , Dx2 , . . . , Dxm

and that K has characteristic zero. Both the
definitions and results carry through in the case that O is a general K-algebra with
K and O satisfying these properties.

4. Some Further Remarks

The proof of Lemma 3.3 gives that the space of linear relations on the entries of
φ over K is the K-span of any reduced basis of NT . So knowing NT offers more
information than does only knowing whether the generalized Wronskians are zero.
Furthermore the construction of Y in Lemma 3.2 offers an approach to calculating
NT , via NY , which we present here in the form of an iterative algorithm. However
we will operate with the range space, rather than the null space, of Mφ

A. So let
RA = spanM{φα}α∈A.

Algorithm for Calculating NY

(1) Initialize α to (0, 0, . . . , 0), A to ∅, and RA to {0}.
(2) If φα /∈ RA, then set A to A ∪ {α} and RA to spanMRA ∪ {φα}.
(3) Set β to be the least element greater than α, according to the lexicographical

ordering, such that A ∪ {β} is Young-like and has cardinality no greater
than N . If no such β exists, skip to step 5.

(4) Set α to β and go back to step 2.
(5) Set Y to A and NY to R⊥A. [Calculation complete.]

To conclude, we offer some casual thoughts that may be of interest to a compu-
tational point of view. (We are assuming that we have some means for addition,
multiplication, inversion, and comparison to zero for the elements of M in stock,
which may still be theoretical assumptions, depending on M.)

For a practical implementation, one must select a data representation for the
spaces RA and NY . Using a reduced M-basis to represent these spaces seems to
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be a natural choice. For one, having the final product NY in reduced form is what
we desire, as it yields a K-basis for the space of linear relations. But also the linear
algebra calculations in Step 2 and Step 5 may be very feasible to implement with
a reduced basis representation. (If there should arise concerns about robustness,
then exercising the freedom to choose the columns by which the basis is reduced
might be beneficial.)

We also point out that this algorithm is adaptive. As specific multi-indices are ei-
ther included or excluded from the set A in Step 2, certain subsequent multi-indices
will be safely bypassed, by Step 3, on the grounds that their inclusion would prohibit
the constructed multi-index set A from being Young-like. Consequentially, it may
be interesting to see a rigorous analysis comparing the complexity of this algorithm
with the complexity of computing all of the generalized Wronskians associated with
Young-like sets.
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