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Abstract. We show that boundaries of holomorphic 1-chains within holo-

morphic line bundles of CP1 can be characterized using a single generating

function of Wermer moments.

In the case of negative line bundles, a rationality condition on the generat-

ing function plus the vanishing moment condition together form an equivalent

condition for bounding. We provide some examples which reveal that the van-

ishing moment condition is not sufficient by itself. These examples also can

be used to demonstrate one point of caution about the use of birational maps

in this topic.

In the case of positive line bundles, where the vanishing moment condition

vacuously holds, boundaries of holomorphic 1-chains can be characterized using

the aforementioned rationality condition modulo a series of polynomial terms

whose degrees are dependent on the degree of the line bundle.

As a side point with potential independent interest, we show for any mero-

morphic function that rationality with prescribed bounds on degree is equiva-

lent to the satisfaction of a particular determinantal differential equation.

1. Introduction

One biholomorphic invariant of a complex space is its collection of boundaries
of holomorphic p-chains. A well-known result by Harvey and Lawson [7] char-
acterizes the real (2p − 1)-chains, with certain regularity, that are boundaries of
holomorphic p-chains within a Stein space by the vanishing moment condition or, if
p > 1, by maximal complexity. (For reasons epitomized by this result, the study of
boundaries of holomorphic p-chains often splits into the cases of p > 1 and p = 1.
We subsequently focus on the case p = 1.) The collection of boundaries of holo-
morphic 1-chains within projective space differs fundamentally in character from
the corresponding collection within affine space. (For instance, in CPn any closed
curve can be arbitrarily approximated by a closed curve that bounds a holomorphic
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1-chain within CPn.) Hence it is not surprising that characterizations of bound-
aries of holomorphic 1-chains within projective space, such as those in [2], [8], and
[9], bear a different flavor from the affine case. At the same time, the referenced
characterizations each feature a type of “correspondence principle”, i.e. a way of
extracting the usual affine characterizations by using suitable restrictions. In light
of the contrast between affine and projective cases, we are interested in examining
spaces intermediate to affine and projective space in a comparative fashion.

The purpose of this paper is develop characterizations of boundaries of holomor-
phic 1-chains within holomorphic line bundles over CP1, treated as spaces in their
own right. This family of line bundles provides a spectrum of spaces intermedi-
ate to the affine and projective cases. Moreover, we harness a Wermer moment
generating function used in [9], which provides a common vehicle for expressing
characterizations across different line bundles in this class. A definite distinction
between negative and positive line bundles emerges.

The negative line bundles over CP1 possess a non-trivial vanishing moment con-
dition, which is necessary for bounding by Stokes’ Theorem. But, as our examples
will show, the vanishing moment condition is not sufficient in this case, thus differ-
ing from the case of a Stein space. (Since O(−1) and C2 are birationally equivalent
via a basic blowdown map, our observations and examples also affirm a proviso
regarding the use of birational maps in this topic.) Sufficiency may be gained by
adding a rationality condition on our Wermer moment generating function or by
requiring that the support of the real 1-chain avoid the zero section. We also note
that this rationality condition can be expressed in terms of differential equations.
(For comparison, a condition in terms of differential equations has also been devel-
oped, via very different means, that provides a characterization of boundaries of
holomorphic 1-chains within CP2 in [10].)

For positive line bundles over CP1, boundaries of holomorphic 1-chains can be
characterized by using the mentioned rationality criterion modulo certain polyno-
mial terms dependent on the degree of the line bundle. (The vanishing moment
condition is vacuous in this case.) As O(1) and CP2\(0 : 0 : 1) are biholomorphic,
this also provides an extension of a special result occurring in [8].

We begin with preliminaries, including a discussion of some rationality criteria, in
Section 2. We proceed to our main characterization results in Section 3, addressing
the negative line bundle case in Subsection 3.1 and the positive line bundle case in
Subsection 3.2.

2. Preliminaries

2.1. Boundaries of Holomorphic 1-Chains. Much of the standard definitions
and the background of geometric measure theory can be found in a text by Federer
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[3], or in an article by Harvey [6]; the latter is more tailored to the specific topics
of this article.

Let X be a complex space with some given Hermitian metric. A holomorphic
1-chain V in X is a locally finite Z-linear combination of currents of integration of
analytic varieties in X with pure complex dimension one. (Alternatively, a holo-
morphic 1-chain V can be viewed as an analytic variety of pure complex dimension
one, i.e. its support sptV , with integer multiplicities associated to each compo-
nent. Then one tacitly identifies this formal object with its corresponding current
of integration.)

For a closed, rectifiable 1-current γ and a holomorphic 1-chain V in X\ spt γ
such that V has a simple (or trivial) extension as a current to X, we say that γ is
the boundary of V within X if

• dV = γ (as currents in X), and
• sptV b X.

Remark: For V to have a simple extension it is sufficient that V have finite
mass. Conversely, if V has a simple extension and it is bounded by γ, then V has
finite mass. So the condition that V have finite mass is a suitable surrogate for the
requirement that V have a simple extension to X. Also note that the statement “γ
bounds V within X” is independent of the choice of Hermitian metric on X.

Let φ : Z → Y be holomorphic map between two connected complex spaces.
The map φ is called a proper modification if φ is proper and there exists a dense
Zariski open set UY in Y such that UZ = φ−1(UY ) is dense in Z and φ|UZ is a
biholomorphism. UZ can be chosen to be maximal, in which case Z\UZ and Y \UY
are called, respectively, the exceptional set and indeterminacy set (or center) of the
modification. (We refer to [4] and [5] for further background.)

A bimeromorphic map f : X 99K Y between X and Y can be specified by giving
its graph Γf as an analytic subspace of X × Y such that the natural projections
π1 : Γf → X and π2 : Γf → Y are proper modifications. Then f is in spirit
identified with π2 ◦π−1

1 . While this is not a true function at all points in X, it does
yield a biholomorphic function at generic points in X. To state this more precisely,
we introduce the following definitions. Let the indeterminacy set of f , denoted
I(f), be the indeterminacy set of the proper modification π1, i.e. those points in
X where π1 does not possess a local inverse. (If we view π1 as bimeromorphic
function, then I(f) = I(π−1

1 ). This reveals a conceptual reversal in the technical
definition of indeterminacy sets for proper modifications. For the sake of clarity,
from this point forward we shall impose the context of bimeromorphic maps when
considering indeterminacy sets.) We define the exceptional set of f by E(f) to be the
π1-projection of the exceptional set of π2, i.e. E(f) = π1(E(π2)) = π1(π−1

2 (I(π−1
2 ))).
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Then f = π2 ◦ π−1
1 , suitably restricted, defines a biholomorphic function between

the two dense Zariski open subsets UX = X\(I(f) ∪ E(f)) and UY = Y \(I(f−1) ∪
E(f−1)) of X and Y , respectively.

Proposition 2.1. Let f : X 99K Y be a bimeromorphic map. If γ is a rectifiable 1-
current in X such that spt γ b UX = X\(E(f)∪I(f)). Then γ bounds a holomorphic
1-chain within X if and only if f∗(γ) bounds a holomorphic 1-chain within Y .

As examples in Subsection 3.1 will show, the assumption that spt γ avoid the
exceptional and indeterminacy sets of f cannot be removed in general. Also we
present this proof in a way that is readily generalizable to boundaries of holomorphic
p-chains.

Proof. It suffices to consider the case where f is a proper modification. Note that
by the support assumptions on γ it follows that f |X\ spt γ is a proper modifica-
tion onto Y \f(spt γ). By Remmert’s proper mapping theorem, for an irreducible
analytic set A in X (resp. X\ spt γ), its image f(A) is an analytic set in Y

(resp. Y \f(spt γ)). The set f |UX (A ∩ UX), which is f(A) minus any components
contained wholly in Y \UY , has the same dimension as A. Thus given a holo-
morphic 1-chain V in X\ spt γ that is compactly supported in X, it holds that
V ′ = (f |UX\ spt γ)∗(V ∩ (UX\ spt γ)) defines a holomorphic 1-chain in Y \f(spt γ)
that is compactly supported in Y . V ′ has no boundary in Y \f(spt γ), but by con-
sideration of the biholomorphism f |UX , if dV = γ then dV ′ = f∗(γ), when V’ is
viewed as a current in Y .

For the reverse, we see that an irreducible analytic set A in Y naturally defines
an analytic set in X via the pull-back f∗(A). The proper transform f−1(A ∩ UY )
also defines an analytic set in X, but the removal of any components contained
in X\UX ensures that the proper transform has the same dimension as A. By
extension, the proper transform of a holomorphic 1-chain bounded by f∗(γ) within
Y forms a holomorphic 1-chain bounded by γ within X.

�

2.2. Algebraic preliminaries. For (ζ∗, ξ∗) ∈ CP1 × CP1, let O(ζ∗,ξ∗) denote the
ring of germs of holomorphic functions about (ζ∗, ξ∗), and let M(ζ∗,ξ∗) denote the
associated fraction field, i.e. the field of germs of meromorphic functions. Let
O∗(ζ∗,ξ∗) andM∗(ζ∗,ξ∗) denote the group of germs of nonvanishing holomorphic func-
tions and the group of germs of non-identically zero meromorphic functions, re-
spectively, about (ζ∗, ξ∗). Similarly define the one-dimensional analogs Oζ∗ , Oξ∗ ,
Mζ∗ , etc. The field of germs of rational functions with respect to ξ about ζ∗, de-
noted Oζ∗(ξ), is the fraction field of the polynomial ring Oζ∗ [ξ]. It has a canonical
inclusion into M(ζ∗,ξ∗) for any ξ∗ in CP1.
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For S ∈ Oζ∗(ξ), the divisor of S yields a germ of a holomorphic 1-chain V near
z = ζ∗ in CP1 × CP1. Conversely for any germ of a holomorphic 1-chain V near
z = ζ∗ in CP1 × CP1, there exists a S ∈ Oζ∗(ξ) whose divisor is V + kO for some
integer k, where O is the germ of the variety ξ = 0. (In particular k will have the
value so that the total degree of intersection of V + kO with vertical lines is zero.)

Note that restriction to ξ = ξ∗ yields a well-defined map from M(ζ∗,ξ∗) ∪ {∞}
to Mζ∗ ∪ {∞}. We say that S ∈ M∗(ζ∗,∞) is in normalized form if S|ξ=∞ ∈ M∗ζ∗ .
Additionally, we say that S is in (N1) form if S|ξ=∞ = 1 and we say that S is in
(N2) form if S|ξ=∞ ∈M∗ζ∗ and S|ζ=ζ∗ ∈M∗∞. (Geometrically, S is in (N2) form if
and only if the divisor of S has no components in ξ =∞ or ζ = ζ∗.) For S ∈ Oζ∗(ξ),
S can be converted into normalized form by multiplication by a suitable power of
ξ, and it can be placed into (N2) form by further multiplication by a suitable power
of (ζ−ζ∗) (or a suitable power of 1

ζ if ζ∗ =∞). These normalization operations are
closed on both Oζ∗(ξ) and O∞(ζ). (For (N1) form instead, one generally requires
multiplication by an element of M∗ζ∗ .)

The ξ-logarithmic derivative of S arises in the Newton formula of symmetric
function theory. In particular, if S = 1− e1ξ

−1 + · · ·+ (−1)nenξ−n is a generating
function of the elementary symmetric functions for a given finite multiset, then Sξ

S

equals
∑∞
k=1 ckξ

−k−1, a generating function of the sums of powers of the multiset.
(This is applicable to a finite multiset in any ring or field, but we focus on fields
of the form Mζ∗ at the present.) There is a straightforward algebraic extension of
this to the case where S ∈ C(ξ) and S is in (N1) form, wherein one considers finite
0-chains rather than finite multisets.

At times we desire to convert information about a function to information about
its logarithmic derivative and vice versa. In that light, we state the following
proposition whose proof is basic.

Proposition 2.2. Let f ∈ M∗(ζ∗,ξ∗). If ξ∗ 6= ∞, then f ∈ O∗ζ∗,ξ∗ if and only if
fξ
f ∈ O(ζ∗,ξ∗) and f |ξ=ξ∗ ∈ O∗ζ∗ . In the case that ξ∗ = ∞, then f ∈ O∗ζ∗,∞ if and

only if fξ
f ∈

1
ξ2O(ζ∗,∞) and f |ξ=∞ ∈ O∗ζ∗ .

2.3. Differential Criteria for Rationality. For F ∈M(ζ∗,ξ∗), define

(1) SFM,N = det



DM+1
ξ F

(M+1)!

DMξ F

M ! · · · DM−N+1
ξ F

(M−N+1)!
DM+2
ξ F

(M+2)!

DM+1
ξ F

(M+1)! · · · DM−N+2
ξ F

(M−N+2)!

...
...

. . .
...

DM+N+1
ξ F

(M+N+1)!

DM+N
ξ F

(M+N)! · · · DM+1
ξ F

(M+1)!

 ,

replacing any entry
DqξF

q! with zero for q < 0. (For the purposes of later iden-
tities, define SFM,−1 = 1.) This expression is central to the following differential
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characterization of rational functions with prescribed bounds on the degrees of the
numerator and denominator.

Proposition 2.3. F is a rational function of ξ with numerator having degree at
most M and denominator having degree at most N if and only if SFM,N = 0.

Remark: The statement SF1,1 = 0 is equivalent to saying that the Schwarzian
derivative of F is zero. So Proposition 2.3 generalizes the Schwarzian derivative
characterization of linear fractional functions.

Proof. F is a rational function with the mentioned restrictions on degree if and
only if the functions 1, ξ, . . . ξM , F, ξF, . . . ξNF are linearly dependent over Mζ∗ .
The latter is equivalent to the identical vanishing of the Wronskian, considered
with respect to ξ, for the indicated set of functions. This Wronskian equals

∏M
p=0 p!

times the determinant

(2) det


DM+1
ξ F DM+1

ξ (ξF ) · · · DM+1
ξ (ξNF )

DM+2
ξ F DM+2

ξ (ξF ) · · · DM+2
ξ (ξNF )

...
...

. . .
...

DM+N+1
ξ F DM+N+1

ξ (ξF ) · · · DM+N+1
ξ (ξNF )


By application of the product rule and suitable column operations, followed by
appropriate scalar multiplication of the rows, it can be shown that the determinant
in (2) equals

∏M+N+1
p=M+1 p! times SFM,N . �

This condition can also be phrased as a differential condition in terms of the
logarithmic derivative H = Fξ

F . For H ∈ 1
ξ2O(ζ0,∞), let

(3) T HM,N = det


TM+1

(M+1)!
TM
M ! · · · TM−N+1

(M−N+1)!
TM+2

(M+2)!
TM+1

(M+1)! · · · TM−N+2
(M−N+2)!

...
...

. . .
...

TM+N+1
(M+N+1)!

TM+N
(M+N)! · · · TM+1

(M+1)!

 ,
where Tj = 0 for j < 0, T0 = 1, T1 = −ξ2H, and Tj = ∂

∂ 1
ξ

(Tj−1) + T1Tj−1 for
j > 1.

Proposition 2.4. Let H ∈ M(ζ∗,∞) with H ∈ 1
ξ2O(ζ0,∞) for some ζ0 near ζ∗.

There exists a S ∈ Oζ∗(ξ)∩M∗(ζ∗,∞) with numerator having degree at most M and

denominator having degree at most N , with respect to 1
ξ , such that H = Sξ

S if and
only if T HM,N = 0.

Proof. Define F (ζ, ξ) = exp
[∫ ξ
ξ∗
H(ζ, ξ′) dξ′

]
. Note that if S ∈ Oζ∗(ξ) ∩M∗(ζ∗,∞)

and Sξ
S = H, then S = AF , for some function A ∈ M∗ζ∗ . Apply Proposition 2.3 to

F for rationality in terms of 1
ξ . By dividing each of the entries in the determinant
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SFM,N by F and by observing inductively that Tj =
Dj1/ξF

F in the definition of T HM,N ,
the proposition follows.

�

Further observations:

(1) Define HFM,N = SFM,N |ξ=ξ∗ . For ξ∗ 6= ∞, the classical Hadamard criterion
for rationality with can be expressed as saying that F ∈ Oξ∗ is a rational
function of ξ with numerator having degree at most M and denominator
having degree at most N if and only if HM+j,N = 0 for all j ≥ 0.

(2) Note that SFM,N = 0 implies that SFM+j,N+k = 0 for every j, k ≥ 0, which is
a simple result of Proposition 2.3. By Sylvester’s determinant identity, it
holds that

(
SFM,N

)2 − SFM−1,NSFM+1,N = SFM,N+1SFM,N−1. So SFM,N+1 = 0
and SFM+1,N = 0 together imply that SFM,N = 0. From these observations,
it follows that if SFM,N equals zero for some M and N , then there exists a
unique pair (M̃, Ñ) such that SFM,N = 0 if and only if M ≥ M̃ and N ≥ Ñ .

With M̃ and Ñ so defined, HF
M,Ñ−1

is not identically zero for M ≥ M̃−1.
For, if HF

M,Ñ−1
did equal 0, then Sylvester’s identity could be successively

applied to show that HF
M+j,Ñ−1

= 0 for j ≥ 0. Employing the Hadamard
criterion, it would follow that SF

M,Ñ−1
= 0, which yields a contradiction. It

follows by a related, but simpler, argument that HF
M̃−1,N

is not identically

zero for N ≥ Ñ −1, barring the case when F is identically zero and M̃ = 0.
(3) Assume ξ∗ 6=∞ and let F (ζ, ξ) =

∑∞
j=0 ej(ζ)(ξ−ξ∗)j with ej(ζ) ∈Mζ∗ , as-

suming uniform convergence in a neighborhood of (ζ0, ξ∗), for some ζ0 near
ζ∗. It is straightforward to see that the coefficient of (ξ− ξ∗)j in the power
series expansion of SFM,N has the form

(
M+N+1+j
M+N+1

)
eM+N+1+jHFM−1,N−1 +

PM,N,j , where PM,N,j denotes some polynomial expression in terms of ek
for M −N + 1 ≤ k < M +N + 1 + j. So, if HFM−1,N−1 does not identically
equal zero, then SFM,N = 0 if and only if eM+N+1+j = −PM,N,j

(M+N+1+j
M+N+1 )HFM−1,N−1

for j ≥ 0. Consequentially, if one arbitrarily chooses ej for j ≤ M + N

subject to the restraint that HFM−1,N−1 not be identically zero, then the
equation SFM,N = 0 uniquely determines ej for j > M +N .

(4) By incorporating the Newton formula, the previous observation can be used
to show that if H =

∑∞
j=1 cj

1
ξj+1 satisfies T HM,N = 0 with a given M and

N , then cj for j ≥M +N + 1 is uniquely determined by cj for j ≤M +N ,
so long as T FM,N |ξ=∞ 6= 0.

2.4. Holomorphic line bundles. Let O(n) denote the holomorphic line bundle
of degree n over CP1. More explicitly, let U0 = C and U∞ = CP1\{0} and define
φ(z, w) = (z, z−nw) on (U0 ∩ U∞) × C. As is known, O(n) can be defined by
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patching these two trivializations together, i.e. by identifying each point (z, w), for
z 6= 0, in U0×C with φ(z, w) in U∞×C. This identification is diagrammed below.

(4)

U0 × C U∞ × C

(z, w)
φ−−−−→ (z, z−nw)

(z, znw)
φ−1

←−−−− (z, w)

The choice of Hermitian metrics is largely immaterial to the results of this article,
so the reader is free to select Hermitian metrics on O(n) as one desires. Determin-
ing the most “natural” metrics for these spaces may well be a topic for further
consideration. To be concrete, we suggest the following metrics. For O(−n), n > 0,
consider the Hermitian metric defined by the continuous extension of the closed
(1,1) form i

2π
dz∧dz̄

(1+|z|2)2 + i
2dw ∧ dw̄ + i

2d(wzn) ∧ d(wzn) on U0 × C. For the trivial
bundle O(0), use the metric determined by the (1,1) form i

2π
dz∧dz̄

(1+|z|2)2 + i
2dw ∧ dw̄.

ForO(n), n > 0, consider the Hermitian metric given by the (1,1) form i
2π

dz∧dz̄
(1+|z|2)2 +

i
2

dw∧dw̄
(1+|z|2)n+1 + i

2
d(wz−n)∧d(wz−n)

(1+|z|−2)n+1 on U0 × C. These particular metrics are complete
and symmetric under inversion between U0 and U∞. In the case of non-negative
line bundles, the given metrics are Kähler.

Lemma 2.5. Let V be a germ of a holomorphic 1-chain about z =∞ in CP1×CP1

defined as the divisor of S(z, w), where S is an element of O∞(ξ) in (N2) form.
The following are equivalent:

(1) V ∩(U0×C), as viewed in U0×C ⊆ O(n), extends to a germ of a holomorphic
1-chain about z =∞ in O(n) with relatively compact support,

(2) The proper transform of V under φ (viewed as a birational map from CP1×
CP1 to itself) has relatively compact support in K × C, for some closed
neighborhood K of ∞,

(3) ζMS(ζ, ξζn) is an element of O∗(∞,∞) for some integer M , and

(4) ζn
Sξ
S (ζ, ξζn) is an element of 1

ξ2O(∞,∞).

Proof. By considering the definitions of O(n) and the proper transform of φ, the
equivalence of 1 and 2 follows. The equivalence of 2 and 3 holds by considering
the proper transform of φ algebraically. The equivalence of 3 and 4 is due to
Proposition 2.2.

�

3. Boundaries of holomorphic 1-chains within holomorphic line

bundles over CP1

Let γ be a closed, rectifiable 1-current in CP1 × CP1 with support satisfying
condition A1. (For the definition of condition A1, see [1].) If we assume that
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spt γ b C2, then the integrals 1
2πi

∫
γ
wkzjdz are well-defined for any non-negative

integers j and k. We call these integrals the Wermer moments of γ in C2 [11].
Define Ûζγ = CP1\π1(spt γ) and Ûξγ = CP1\π2(spt γ). For (ζ, ξ) ∈ Ûζγ × Ûξγ , let

(5) Hγ(ζ, ξ) =
1

2πi

∫
γ

1
ξ − w

dz

z − ζ
,

which is defined if spt γ b C× CP1, and let

(6) Gγ(ζ, ξ) =
1

2πi

∫
γ

1
ξ − w

dz

(z − ζ)2
.

(Technically speaking, for a meromorphic form ω, the integral
∫
γ
ω means the cur-

rent γ evaluated against the form χω, where χ is some compactly supported C∞

cut-off function that equals one on a neighborhood of spt γ and zero near any poles
of ω.) These define holomorphic functions for (ζ, ξ) on Ûζγ × Ûξγ . Observe that
Hγ(ζ, ξ) has the series expansion

(7) Hγ(ζ, ξ) =
∞∑
k=0

∞∑
j=0

(
−1
2πi

∫
γ

wkzjdz

)
1

ζj+1

1
ξk+1

for (ζ, ξ) near (∞,∞) if spt γ b C2 and the series expansion

(8) Hγ(ζ, ξ) =
∞∑
k=0

∞∑
j=0

(
−1
2πi

∫
γ

wk
1

(z − ζ∗)j−1
d(

1
z − ζ∗

)
)

(ζ − ζ∗)j 1
ξk+1

for (ζ, ξ) near (ζ∗,∞) for ζ∗ ∈ Ûζγ if spt γ b CP1\{ζ∗} × C. Convergent series
expansions for Gγ(ζ, ξ) can be derived in view of the relation Gγ(ζ, ξ) = ∂

∂ζHγ(ζ, ξ).
Namely,

(9) Gγ(ζ, ξ) =
∞∑
k=0

∞∑
j=0

(
j + 1
2πi

∫
γ

wkzjdz

)
1

ζj+2

1
ξk+1

for (ζ, ξ) near (∞,∞), and

(10) Gγ(ζ, ξ) =
∞∑
k=0

∞∑
j=0

(
−(j + 1)

2πi

∫
γ

wk
1

(z − ζ∗)j
d(

1
z − ζ∗

)
)

(ζ − ζ∗)j 1
ξk+1

for (ζ, ξ) near (ζ∗,∞) for ζ∗ ∈ Ûζγ .
Both Hγ and Gγ are two-variable generating functions of the Wermer moments

in C2. These generating functions are closely connected but vary slightly with
respect to certain properties. For one, Gγ does not require the assumption that γ
be compactly supported in C×CP1, unlike Hγ . Also the family of coefficients of the
series expansion of Gγ(ζ, ξ) about (ζ∗,∞) corresponds, up to constant multiples,
to the family of Wermer moments of γ with respect to the coordinates 1

z−ζ∗ and w
in the affine space (CP1\{ζ∗})×C. In these ways Gγ is more tuned to CP1 ×CP1

than Hγ is. However Hγ has the helpful feature of being a Cauchy-type integral.
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Should γ be compactly supported in (CP1\{ζ∗})× CP1, but not in C× CP1, then
a suitable substitute for Hγ is

(11)
∫ ζ

ζ∗
Gγ(ζ ′, ξ) dζ ′ =

1
2πi

∫
γ

1
ξ − w

(ζ − ζ∗) dz
(z − ζ)(z − ζ∗)

.

This has the series expansion

(12)
∞∑
k=0

∞∑
j=0

(
−1
2πi

∫
γ

wk
1

(z − ζ∗)j
d(

1
z − ζ∗

)
)

(ζ − ζ∗)j+1 1
ξk+1

,

for (ζ, ξ) near (ζ∗,∞) if spt γ b CP1\{ζ∗} × C.
These generating functions can be used to express characterizations for the

boundaries of holomorphic 1-chains within CP1 × CP1 and within CP1 × C, as
is demonstrated in [9]. We reiterate these results below, incorporating some minor
refinement reflecting the mentioned compatibility of Gγ with CP1 × CP1.

Theorem 3.1. Let γ be a closed rectifiable 1-current in CP1 × CP1 with support
satisfying condition A1. Let ζ∗ ∈ Uζγ and ξ∗ ∈ Uξγ . Then γ bounds a holomorphic
1-chain of finite mass within CP1 × CP1 if and only if there exist R ∈ Oξ∗(ζ) and
S ∈ Oζ∗(ξ), neither identically zero, such that

(13) Gγ(ζ, ξ) =
∂

∂ζ

(
Rξ(ζ, ξ)
R(ζ, ξ)

+
Sξ(ζ, ξ)
S(ζ, ξ)

)
near (ζ∗, ξ∗).

Theorem 3.2. Let γ be a closed rectifiable 1-current compactly supported in CP1×
C with support satisfying condition A1. Let ζ∗ ∈ Uζγ . Then γ bounds a holomorphic
1-chain of finite mass within CP1×C if and only if there exists S ∈ Oζ∗(ξ)∩O∗(ζ∗,∞)

such that

(14) Gγ(ζ, ξ) =
∂

∂ζ

(
Sξ(ζ, ξ)
S(ζ, ξ)

)
near (ζ∗,∞).

Remark: The existence of the decomposition (13) for a particular R and S is
equivalent to the existence of a holomorphic 1-chain V bounded by γ that agrees
with the divisor of R−1 near w = ξ∗ and with the divisor of S near z = ζ∗, modulo
components contained in w = ξ∗ and z = ζ∗.

Due to this remark, taking Theorem 3.1 with R = 1 would yield Theorem 3.2.
Likewise, this remark with R = 1 and S = 1 shows that γ bounds a holomorphic
1-chain within C2 if and only if Gγ(ζ, ξ) = 0 near (∞,∞). This latter condition is
equivalent to the vanishing moment condition, which can be seen by using the series
decomposition of Gγ in (9). This is the “correspondence principle” relationship to
the affine result.

So Gγ is a suitable vehicle for phrasing parallel characterizations of the bound-
aries of holomorphic 1-chains within CP1×CP1, CP1×C, and C2. In the next two
subsections we use Gγ to produce parallel characterizations within the holomorphic
line bundles over CP1.
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3.1. Negative line bundles over CP1.

Theorem 3.3. Let γ be a closed rectifiable 1-current compactly supported in U0×C
of O(−n), n > 0, with support satisfying condition A1. Then γ bounds a holomor-
phic 1-chain of finite mass within O(−n) if and only if there exists S ∈ O∞(ξ) ∩
O∗(∞,∞) such that

(15) Gγ(ζ, ξ) =
∂

∂ζ

(
Sξ(ζ, ξ)
S(ζ, ξ)

)
near (∞,∞),

and one of the following equivalent supplemental conditions hold:

(1) 1
ζn

Sξ
S (ζ, ξ/ζn) ∈ 1

ξ2O(∞,∞),

(2) Sξ
S has a Taylor series at (∞,∞) of the form

∑∞
k=1 fk(ζ) 1

ξk+1 with ζnkfk(ζ) ∈
O∞ for k ≥ 1, or

(3) 1
2πi

∫
γ
wkzj dz = 0 for j, k ≥ 0 such that j ≤ nk − 2.

Proof. By Theorem 3.2, its following remark, and Lemma 2.5, it follows that γ
bounds a holomorphic 1-chain of finite mass within O(−n) if and only the condition
of Theorem 3.2 holds along with supplemental condition 1. It only remains to show
that the mentioned supplemental conditions are equivalent when the representation
(15) holds.

As Sξ
S ∈

1
ξ2O(∞,∞), we may express Sξ

S using the series expansion
∑∞
k=1 fk(ζ) 1

ξk+1

for unique fk ∈ O∞. Since 1
ζn

Sξ
S (ζ, ξ/ζn) =

∑∞
k=1 fk(ζ)ζnk 1

ξk+1 , supplemental con-
ditions 1 and 2 are equivalent.

By considering the Taylor series expansion of Gγ given in (9), it holds that 2
and 3 are equivalent as supplemental conditions. �

We refer to the collection of integrals in condition 3 as the Wermer moments of γ
in O(−n). The holomorphic 1-form 1

2πiw
kzj dz on U0×C extends to a holomorphic

1-form on O(−n) when j, k ≥ 0 and j ≤ nk − 2. So it follows directly by Stokes
theorem that condition 3 in Theorem 3.3 is necessary for γ to bound a holomorphic
1-chain within O(−n), n > 0. Later examples will show that this condition is not
sufficient by itself. Besides adding the rationality condition in Theorem 3.3, one can
also gain sufficiency by requiring that spt γ avoid the zero section of O(−n). (Note:
The zero section of O(−n) is invariant under the biholomorphic automorphisms of
O(−n), so avoidance of the zero section is a coordinate independent restriction.)

Theorem 3.4. Let γ be a closed rectifiable 1-current compactly supported in U0 ×
(C\{0}) of O(−n), n > 0, with support satisfying condition A1. Then γ bounds a
holomorphic 1-chain of finite mass within O(−n) if and only if 1

2πi

∫
γ
wkzj dz = 0

for j, k ≥ 0 such that j ≤ nk − 2
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Proof. In light of Theorem 3.3, we see that γ bounds within O(−n) if and only if γ
bounds within O(−1) and the Wermer moments 1

2πi

∫
γ
wkzj dz vanish for j, k ≥ 0

such that j ≤ nk − 2. Thus it suffices to establish this theorem in the case n = 1.
As the forward implication also follows from Theorem 3.3, it suffices to show that
γ bounds a holomorphic 1-chain within O(−1) when 1

2πi

∫
γ
wkzj dz = 0 for j ≥ 0,

k ≥ j + 2 along with the given support constraint on γ.
Let ψ be the birational map from O(−1) to C2 given by (z, w) 7→ (w, zw) for

U0 × C and by (z, w) 7→ ( 1
zw,w) for U∞ × C. Note that I(ψ) = ∅ and E(ψ) equals

the zero section in O(−1). It holds by Proposition 2.1 that γ bounds within O(−1)
if and only if ψ∗(γ) bounds within C2. With the given vanishing moments, it follows
using integration by parts that

∫
γ
(wz)k

′
(w)j

′
dw = −k′

j′+k′

∫
γ
wj
′+k′+1zk

′−1 dz = 0
for j′ ≥ 0, k′ ≥ 0, which implies that ψ∗(γ) bounds within C2. �

The following examples show that the vanishing moment condition by itself fails
to be sufficient for bounding within O(−n), n > 0.

Example 1: Let ∆ be the unit disk in C viewed as a current of integration
with multiplicity +1. Let q > 1 and define Tn,k,q : C → O(−n) to be the map
given by λ 7→ ( 1

kq
1
λ ,

1
kq(n+1) ) ∈ U∞ × C (or λ 7→ ( 1

kq
1
λ ,

1
kq λ

n) ∈ U0 × C for λ 6= 0).
Let γk = (Tn,k,q)∗(b∆) and Vk = (Tn,k,q)∗(∆). Observe that γk bounds Vk within
O(−n). Let γ =

∑∞
k=1 γk, which defines a rectifiable 1-current in O(−n) with

support satisfying condition A1. (This fact employs a mass estimate of the form
M(γk) ≈ C1

1
kq .) The Wermer moments of γ in O(−n) vanish as the same holds

for each γk. But V =
∑∞
k=1 Vk does not have finite mass in O(−n), plus V is not

a holomorphic 1-chain as it has infinitely many sheets accumulating along the zero
section. If γ bounded a holomorphic 1-chain W within O(−n), then W −

∑N
k=1 Vk

would have support confined to {|w| ≤ 1
(N+1)q }∩ {|wz

n| ≤ 1
(N+1)q } for all N . This

implies that W equals V plus some multiple of the zero section. Thus γ does not
bound a holomorphic 1-chain within O(−n).

(For comparison, let ψ denote the birational map from O(−1) to C2 given by
(z, w) 7→ (w, zw) on U0 ×C, and note that

∑∞
k=1 ψ∗(Vk) has finite mass in C2 and

is a holomorphic 1-chain bounded by ψ∗(γ) within C2.)

Example 2: Let φj(z) = 1−4−j−z
1−(1−4−j)z . Taking the principal branch of the log-

arithm, − 1
i log φj(eiθ) defines an increasing real function for θ in (0, 2π). Also

| log φj(eiθ)| < C
2j+1 for θ in (0, 2π) that satisfy |1 − eiθ| > 5

2j , where C is an
upper bound for log(1+z)

z on {|z| < 1
2}. The infinite Blaschke product B(z) =∏∞

j=1
(1−4−j)−z
1−(1−4−j)z defines a meromorphic function on CP1\{1}. Again − 1

i logB(eiθ)
is an increasing real function for θ in (0, 2π). Using the earlier estimate, there exists
a constant C1 such that | logB(eiθ)| ≤ C1

(
1− log |1− eiθ|

)
for all θ in (0, 2π). Let

f(z) = B(z)
√

1− z, which defines a two-valued meromorphic function on CP1\{1}.
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Define f(1) = 0, which makes both branches of f continuous over ∆. We point out
that

∫
b∆
| ∂∂θf(eiθ)| dθ ≤

∫
b∆

1

2
√
|1−eiθ|

dθ+
∫
b∆

√
|1− eiθ| ∂∂θ

(
1
i logB(eiθ)

)
dθ <∞.

Let T (z) = ( 1−z
f(z) , f(z)) for z in ∆\{1}, taking the branch of f such that f(0)

is positive. Define γ to be the image of T |b∆, taken with appropriate orientation,
in U0 × C of O(−1). The finiteness of the integral mentioned at the end of the
previous paragraph can be used to show that γ has finite mass and so defines a
rectifiable 1-current. Let T̃ (z) = ψ ◦ T (z) = (f(z), 1− z). Observe that the image
of T̃ |∆ corresponds to a holomorphic 1-chain in C2\ sptψ∗γ and is bounded by ψ∗γ
within C2. (By Wirtinger’s Inequality and the isoperimetric inequality, one can
demonstrate that it has finite mass.) So the Wermer moments of ψ∗γ in C2 vanish,
which implies the same for the Wermer moments of γ in O(−1). However γ does
not bound within O(−1). If it did bound, it would necessarily bound the image of
T |∆, but this has infinitely many intersections with z = ζ for |ζ| > 1.

Remark: As noted in Proposition 2.1 a birational map (or more generally a
bimeromorphic map) ψ : X 99K Y bijectively maps the collection of boundaries of
holomorphic 1-chains in X that avoid I(ψ) ∪ E(ψ) to the collection of boundaries
of holomorphic 1-chains within Y that avoid I(ψ−1)∪E(ψ−1). The previous exam-
ples demonstrate that this proviso regarding avoidance of the indeterminacy and
exceptional sets cannot be discarded in the fundamental case of a blow-down map.

The existence of a S ∈ O∞(ξ) ∩ O∗(ζ∗,∞) satisfying (14) serves as a type of
finiteness condition on the number of sheets permitted near z = ζ∗. This explains
why the addition of this condition excludes the pathological behavior arising in the
previous examples. Furthermore this rationality condition is readily checkable with
selected bounds on degree, as shown in the following theorem and remarks.

Theorem 3.5. Let γ be a closed rectifiable 1-current compactly supported in U0×C
of O(−n), n ≥ 0, with support satisfying condition A1. Let ζ∗ be in the component
of Uζγ containing ∞. Then γ bounds a holomorphic 1-chain V of finite mass within
O(−n) such that the positive intersections of V with z = ζ∗ have total degree at
most M and negative intersections have total degree at most N if and only

(1) 1
2πi

∫
γ
wkzj dz = 0 for j, k ≥ 0 such that j ≤ nk − 2, and

(2) there exists a rational function C(ξ) =
∑M
k=0 akξ

−k∑N
k=0 bkξ

−k , with ak, bk ∈ C and

both a0 and b0 non-zero such that H :=
∫ ζ
ζ∗
Gγ(ζ ′, ξ) dζ ′ + Cξ(ξ)

C(ξ) is the ξ-
logarithmic derivative of a function rational in terms of 1

ξ with numerator
degree at most M and denominator degree at most N (i.e. H satisfies the
condition of Proposition 2.4 with M and N as given.)

Proof. If we assume that γ bounds a holomorphic 1-chain within O(−n) satisfying
the desired degree constraint near z = ζ∗, then the Wermer moment condition 1



14 RONALD A. WALKER

follows from Theorem 3.3. Furthermore we deduce that there exists a S ∈ Oζ∗(ξ)∩
O(ζ∗,∞) having numerator degree at most M and denominator degree at most N
(in terms of 1

ξ ) such that Gγ(ζ, ξ) = Sξ(ζ,ξ)
S(ζ,ξ) using Theorem 3.2 and the following

remark. Setting C(ξ) = S(ξ, ζ∗), we get that Sξ(ζ,ξ)
S(ζ,ξ) =

∫ ζ
ζ∗
Gγ(ζ ′, ξ) dζ ′ + Cξ(ξ)

C(ξ) .
For the reverse implication, note that condition 2 implies that Gγ(ζ, ξ) = ∂

∂ζH

with H satisfying Proposition 2.4. Thus by Theorem 3.2 and the following remark,
we obtain that γ bounds a holomorphic 1-chain V within O(0) such that V satisfies
the desired degree specifications near z = ζ∗. Since γ bounds within O(0) and the
Wermer moments for O(−n) vanish, we obtain via Theorem 3.3 that γ bounds some
holomorphic 1-chain W within O(−n). It holds that V −W is a true holomorphic
1-chain with compact support in O(0), thus V − W is a linear combination of
horizontal planes, i.e. varieties having the form CP1 × {wj}. The germs of V −W
near z = ζ∗ (besides any in the zero section) must be contained in V . Thus we may
subtract the corresponding horizontal planes from V which preserves dV and does
not increase the degree of the positive and negative intersections of V with z = ζ∗.
Finally, by suitable addition of multiples of the zero section to W , we see that we
may assume that W = V , which shows that γ bounds V within O(−n).

�

Remarks:

(1) In the case n > 0 and ζ∗ =∞, the theorem still holds if we fix C(ξ) = 1 in
2. With C(ξ) thus fixed, condition 2 corresponds to a differential condition
(i.e. Proposition 2.4) on

∫ ζ
ζ∗
Gγ(ζ ′, ξ) dζ ′.

(2) In any case, fixing C(ξ) = 1 in condition 2 does not disrupt the reverse
implication of Theorem 3.5. Now define condition 2’ to be condition 2 with
C(ξ) = 1 and with M and N each replaced with M+N . A slight alteration
of the proof above (namely using the ξ-logarithmic derivative of S(ζ,ξ)

S(ζ∗,ξ) for
H) shows that the forward implication of Theorem 3.5 holds when using
condition 2’ in place of 2. Therefore γ bounds within O(−n), n ≥ 0, if and
only if the Wermer moments vanish and H =

∫ ζ
ζ∗
Gγ(ζ ′, ξ) dζ ′ satisfies the

differential condition given by Proposition 2.4 for some M and N .
(3) If γ has no horizontal portions, then the theorem also holds for any ζ∗ ∈ Uζγ .

3.2. Positive line bundles over CP1.

Theorem 3.6. Let γ be a closed rectifiable 1-current in U0×C of O(n), n > 0, with
support satisfying condition A1. Let ζ∗ ∈ Uζγ . Then γ bounds a holomorphic 1-chain
of finite mass within O(n) if and only if there exist R ∈ O∞(ζ) and S ∈ Oζ∗(ξ),
neither identically zero, such that

(16) Gγ(ζ, ξ) =
∂

∂ζ

(
Rξ(ζ, ξ)
R(ζ, ξ)

+
Sξ(ζ, ξ)
S(ζ, ξ)

)
near (ζ∗,∞),
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and one of the following equivalent supplemental conditions hold:

(1) ζn
Rξ
R (ζ, ξζn) ∈ 1

ξ2O(∞,∞) and Rξ
R (ζ, ξ) ∈ 1

ξ2O(ζ0,∞) for all ζ0 6=∞, or

(2) Rξ
R has a series development at ξ = ∞ of the form

∑∞
k=1 fk(ζ) 1

ξk+1 with
each fk(ζ) being a polynomial with degree at most nk.

(Note: Since R ∈ O∞(ζ), it defines germs in M(ζ0,∞) for any ζ0.)

Proof. As may be seen from the construction in the proof of Theorem 3.1 one can
arbitrarily select ζ∗ ∈ Uζγ without modifying R. Since the supplemental conditions
depend only on R, without loss of generality we may assume that ζ∗ =∞.

By Theorem 3.1, the remark following it, Lemma 2.5, and Proposition 2.2, it
holds that γ bounds a holomorphic 1-chain of finite mass within O(n) if and only
if the condition of Theorem 3.1 holds along with the following, which we term
supplemental condition 0.

(0) ζn
Sξ
S (ζ, ξζn) ∈ 1

ξ2O(∞,∞) and Rξ
R (ζ, ξ) ∈ 1

ξ2O(ζ0,∞) for all ζ0 6=∞

When the condition of Theorem 3.1 holds we may integrate (13) to obtain that
there exists a m ∈ Z and a f(ξ) ∈ 1

ξ2O∞ such that

(17) Hγ(ζ, ξ) =
Rξ
R

(ζ, ξ) +
Sξ
S

(ζ, ξ) +
m

ξ
+ f(ξ) near (∞,∞).

(To see why the later two terms have their form, it is useful to note that Hγ(∞, ξ) =
0 and that hξ(ξ)

h(ξ) resides in 1
ξZ + 1

ξ2O∞ for any h in M∞.) Replace R(ζ, ξ) with

R(ζ, ξ) exp
[∫ ξ
∞ f(ξ′) dξ′

]
, which does not change the assumptions on R but removes

the term f(ξ) from above. Furthermore this “folding in of f” does not affect whether
each individual supplemental condition holds or not. Thus

(18) ζnHγ(ζ, ξζn) = ζn
Rξ
R

(ζ, ξζn) + ζn
Sξ
S

(ζ, ξζn) +
m

ξ
near (∞,∞).

If we assume supplemental condition 0, then each term, save m
ξ , is in 1

ξ2O(ζ0,∞)

for some finite ζ0 close to ∞, thus m = 0. Therefore ζn RξR (ζ, ξζn) ∈ 1
ξ2O(∞,∞),

which implies supplemental condition 1.
Conversely suppose that supplemental condition 1 holds. Replacing S(ζ, ξ) with

ξmS(ζ, ξ) allows us to assume that m = 0. Then ζn
Sξ
S (ζ, ξζn) ∈ 1

ξ2O(∞,∞) follows
from (18) and so supplemental condition 0 holds.

For R ∈ O∞(ζ), Rξ
R has the series development

∑∞
k=0 fk(ζ) 1

ξk+1 for uniquely
defined fk(ζ) ∈ C(ζ) with convergence occurring for ξ near ∞ and those ζ such
that R(ζ,∞) is finite and nonzero. Note that ζn RξR (ζ, ξζn) has the series expansion∑∞
k=0

fk(ζ)
ζnk

1
ξk+1 . Thus supplemental condition 1 is equivalent to saying that f0 = 0

and that for k ≥ 1, fk ∈ C[ζ] and fk ∈ ζnkC[ 1
ζ ]. Thus supplemental conditions 1

and 2 are equivalent.
�
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As the following reveals, one may use supplemental condition 2 in Theorem 3.6
to describe Rξ

R without any need to establish rationality for R.

Theorem 3.7. Let γ be a closed rectifiable 1-current in U0 × C of O(n), n > 0,
with support satisfying condition A1. Let ζ∗ ∈ Uζγ . Then γ bounds a holomorphic 1-
chain of finite mass within O(n) if and only if there exist S ∈ Oζ∗(ξ) not identically
zero, polynomials fk(ζ) ∈ C[ζ] of degree at most nk for k ≥ 1, and an integer m
such that

(19)
∫ ζ

ζ∗
Gγ(ζ ′, ξ) dζ ′ =

m

ξ
+
∞∑
k=1

fk(ζ)
1

ξk+1
+
Sξ(ζ, ξ)
S(ζ, ξ)

near (ζ∗,∞).

Proof. The forward implication follows by Theorem 3.6 and some elements of its
proof. So it suffices to prove the reverse implication. Without loss of generality, we
may assume that S is in (N2) form, and thus we assume that m = 0.

Consider the case ζ∗ 6=∞. Take the divisor of S in a neighborhood of z = ζ∗ to
define a holomorphic 1-chain VS bounded by a finite, smooth, real 1-chain ΓS within
U0 × C. Let Γ = γ − ΓS . Near (ζ∗,∞), GΓS (ζ, ξ) = ∂

∂ζ
Sξ
S (ζ, ξ) and so GΓ(ζ, ξ) =∑∞

k=1 f
′
k(ζ) 1

ξk+1 . By considering the series decomposition of GΓ at (ζ∗,∞), as

in (10), it holds that 1
2πi

∫
Γ

(
w

(z−ζ∗)n

)k (
1

z−ζ∗

)j−nk
d
(

1
z−ζ∗

)
= 0 for k ≥ 0 and

j ≥ nk. Since 1
z−ζ∗ and w

(z−ζ∗)n provide affine coordinates for O(n)\{z = ζ∗},
it follows that Γ bounds a holomorphic 1-chain V ′S within O(n)\{z = ζ∗}. In
conclusion, γ bounds the holomorphic 1-chain V := VS + V ′S within O(n).

For the case ζ∗ =∞, simply perturb ζ∗ to be a finite value near ∞ and use the
preceding argument.

�

Note that O(1) is biholomorphic to CP2\(0 : 0 : 1) via the map (z, w) 7→ (1 :
z : w) on U0 × C and (z, w) 7→ ( 1

z : 1 : w) on U∞ × C. So these results have
connections to CP2\(0 : 0 : 1) which has also been studied in [8] as a special, though
foundational, case in connection with work pertaining to CPm\CPm−2. To discuss
this further, we present the following corollary which suitably mirrors Theorem 8.3
of [8].

Corollary 3.8. With the initial assumptions of Theorem 3.7, γ bounds a holomor-
phic 1-chain V of finite mass within O(n), n ≥ 0, with the positive intersections of
V with z = ζ∗ having degree at most M and the negative intersections having degree
at most N if and only there exist polynomials fk(ζ), such that each fk has degree
at most nk and H :=

∫ ζ
ζ∗
Gγ(ζ ′, ξ) dζ ′ −

∑∞
k=1 fk(ζ) 1

ξk+1 satisfies the condition of
Proposition 2.4 with M and N as given.

In [8], Theorem 8.3, along with Note 8.5, largely corresponds to Corollary 3.8
here in the special case that n = 1, N = 0, and γ is a C1 chain. (The case
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N = 0 corresponds to taking S to be a polynomial in ξ, in which case Sξ
S is

a generating function of the Newton hierarchy used in [8].) So the case n = 1 of
Corollary 3.8 here provides an extension of Theorem 8.3 that handles both negative
intersections and positive intersections between the bounded holomorphic 1-chain
and the line z = ζ∗. The discussion in Section 3 of [8], considered more broadly,
offers commentary relevant to Corollary 3.8 in the case N = 0. For N > 0, that
commentary can be augmented by the results and observations given presently in
Subsection 2.2.
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